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Abstract 

Sirtuins, which are NAD+-dependent class III histone deacetylases, are involved in various biological processes, 
including DNA damage repair, immune inflammation, oxidative stress, mitochondrial homeostasis, autophagy, 
and apoptosis. Sirtuins are essential regulators of cellular function and organismal health. Increasing evidence sug-
gests that the development of age-related diseases, including kidney diseases, is associated with aberrant expression 
of sirtuins, and that regulation of sirtuins expression and activity can effectively improve kidney function and delay 
the progression of kidney disease. In this review, we summarise current studies highlighting the role of sirtuins in renal 
diseases. First, we discuss sirtuin family members and their main mechanisms of action. We then outline the possible 
roles of sirtuins in various cell types in kidney diseases. Finally, we summarise the compounds that activate or inhibit 
sirtuin activity and that consequently ameliorate renal diseases. In conclusion, targeted modulation of sirtuins 
is a potential therapeutic strategy for kidney diseases.
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Introduction
Sirtuins comprise a family of nicotine adenine dinucleo-
tide (NAD+)-dependent class III histone deacetylases that 
are closely associated with organismal health and disease 
progression [1]. Sirtuins can be traced back 40 years to 
the silent information regulator 2 (Sir2) in Saccharomy-
ces cerevisiae. Sir2 represses transcription at ribosomal 
DNA sites and telomeres, extending yeast lifespan by 

improving genomic instability, and further studies have 
revealed that Sir2 has NAD+-dependent histone dea-
cetylase activity. As homologous genes of Sir2 have been 
gradually isolated from animals, plants, and bacteria. 
Sir2 homologous proteins in all species are collectively 
referred to as sirtuins [2]. To data, seven sirtuin fam-
ily members have been identified in mammals, namely, 
Sirt1-Sirt7. The structures of these members included 
identical central structural regions. However, differences 
in their respective active sites result in specific biological 
functions [3]. Initially, sirtuins were defined as histone 
deacetylases, but with further studies, sirtuins have been 
shown to have multiple enzymatic activities, including 
mono-ADP-ribosyltransferase, deacylase, decrotony-
lase, demalonylase, and desuccinylase activities. Sirtuins 
deacetylate non-histone proteins and regulate cellular 
processes [4]. Sirtuins depend on NAD+ for their activ-
ity, which is transformed into nicotinamide (NAM) in 
the presence of sirtuins. NAM is then transformed into 
nicotinamide mononucleotide (NMN) by the action of 
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intracellular nicotinamide phosphoribosyltransferase 
(iNAMPT), which in turn is catalysed into NAD by the 
critical rate-limiting enzyme nicotinamide mononucleo-
tide adenylyltransferase (NMNAT), and the cycle repeats 
[5]. The level of NAD+ is closely associated with disease 
progression. Furthermore, several studies have confirmed 
that the level of NAD+ decreases with the progression 
of renal disease and that enhancement of NAD+ has an 
ameliorating effect [6].

The sirtuin family has received much attention in the 
past 20 years, attributed to their involvement in the 
regulation of various critical biological processes in pre-
clinical and clinical models, including oxidative stress, 
inflammation, mitochondrial homeostasis, autophagy, 
DNA damage repair, and procedures and functions 
that are essential for maintaining cellular and organ-
ismal homeostasis [7]. Activation of sirtuins can delay 
the progression of several renal diseases, including dia-
betic kidney disease (DKD), acute kidney injury (AKI), 
and hypertensive nephropathy. In DKD mice, Sirt1 pro-
motes the activity of forkhead box O (FOXO) 3a, exerts 
antioxidant effects, and reduces oxidative stress injury 
in DKD mice [8]. Overexpression of Sirt7 also reduces 
inflammation and improves renal function in DKD [9]. 
Lack of Sirt3 further exacerbates the pathological dam-
age of AKI, while overexpression of Sirt3 promotes optic 
atrophy 1 (OPA1)-mediated mitochondrial fusion and 
alleviates mitochondrial damage in AKI [10]. Sirt1 regu-
lates autophagy and delays the progression of AKI by 
deacetylating of the autophagy regulator Beclin1 [11]. In 
hypertensive nephropathy, an increase in the number of 
DNA double-strand breaks (DSBs) is accompanied by a 
decrease in Sirt6 expression [12]. Although many studies 
have confirmed the modulatory role of sirtuins in renal 
disease, their exact role remains unclear.

Sirtuins have long been considered therapeutic 
targets for various diseases, and small molecules or 
natural compounds that regulate sirtuins are promising 
potential therapeutic agents [13]. Sirtuins target and 
regulate various biological processes in kidney cells and 
are involved in the progression of various renal diseases. 
Podocyte-specific knockdown of Sirt6 exacerbates 
podocyte injury and proteinuria in adriamycin-induced 
nephropathy and DKD. In addition, Sirt6 overexpression 
protects against podocyte apoptosis and inflammatory 
injury by deacetylating H3K9, inhibiting Notch1 and 
Notch4 transcription, and enhancing autophagy [14]. 
Mice with specific knockdown of Sirt3 in proximal renal 
tubular epithelial cells (RTECs) were more likely to 
exhibit increased acetylation of mitochondrial proteins 
and enhanced renal fibrosis than normal mice. In 
contrast, activation of Sirt3 improved their acetylation 
levels and delayed renal fibrosis [15]. Continuous 

research on sirtuin family members has led to the 
development of modulators targeting sirtuins, such as 
resveratrol and curcumin, which improve renal disease 
by activating Sirt1 and Sirt3. In contrast, synthetic sirtuin 
inhibitors, such as AK-1, effectively alleviate renal disease 
by inhibiting Sirt2 progression [16]. In this review, we 
summarise the studies on the sirtuin family regulation of 
renal cells, and thus, the improvement of renal diseases, 
by describing the various functions of sirtuin family 
members and highlighting the therapeutic potential of 
sirtuin modulators in renal diseases.

The origin and function of the sirtuin family
Sirtuins are a family of highly evolutionarily conserved 
NAD+-dependent class III histone deacetylase signalling 
proteins that are widely found in prokaryotes and eukar-
yotes. The sirtuin family comprises seven homologous 
members: Sirt1-Sirt7. They are distributed across differ-
ent parts of the cell. Sirt1 and Sirt2 are in the nucleus and 
cytoplasm, Sirt6 is in the nucleus, Sirt7 is in the nucleo-
lus, and Sirt3, 4, and 5 are located in the mitochondria 
[17]. The sirtuin structure consists of a central catalytic 
region, an N-terminal region, and a C-terminal region. 
Although subtle differences in the binding sites may exist, 
the catalytic core region of the sirtuin family is structur-
ally conserved. Notably, the N- and C-termini of sirtuins 
differ considerably in length, chemical composition, and 
sensitivity to post-translational modifications compared 
with the conserved catalytic core region [18]. Sirtuins 
have different biological functions because of their dif-
ferent binding sites and subcellular localisations. For 
example, Sirt1, Sirt2, Sirt3, Sirt5, Sirt6, and Sirt7 all have 
NAD+-dependent deacetylase activity that mediates the 
deacetylation of histones and non-histones. Sirt4 [19] and 
Sirt6 have mono-ADP-ribosyltransferase activity [20], 
and Sirt5 is also a desuccinylase [21]. Sirtuins require 
NAD+ as a catalytic cofactor and can hence be inhibited 
by NADH; therefore, sirtuins are particularly sensitive to 
the intracellular NAD+/NADH ratios [22]. Sirtuins are 
involved in a variety of metabolic regulation and biologi-
cal processes, such as cell survival, apoptosis, prolifera-
tion, cellular senescence, stress response, inflammation, 
oxidative stress, mitochondrial production, genome sta-
bilisation and metabolism. The complexity of the interac-
tions between sirtuins provides a degree of support for 
their role as essential regulators of cellular biology [23] 
(Figs. 1 and 2).

Sirtuins in the nucleus
Sirt1
Sirt1 is mainly localised in the nucleus; however, in 
response to certain stimuli, Sirt1 translocates from 
the nucleus to the cytoplasm [24]. It is involved in the 
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regulating of a variety of biological processes, including 
oxidative stress [25], inflammation [26], mitochondrial 
metabolic disorders [27], autophagy [11], DNA damage 
repair [28], and telomere maintenance [29]. Compared 
with normal mice, mitochondrial dysfunction and 
lethality are significantly higher in systemic Sirt1 
knockout mice after AKI [30]. It deacetylates histones 
and non-histones and maintains normal cellular 
function. Sirt1 regulates acetyl-histone H3 expression 
in a high glucose (HG) environment and attenuates 
streptozotocin (STZ)-induced renal oxidative damage in 
diabetic mice [31]. Cytoplasmic cortactin is important 
for maintaining the actin cytoskeleton. Sirt1 protects 
podocytes and repairs glomerular damage by activating 
cortactin deacetylation in the nucleus, which drives the 
localisation of acetylated cortactin to the cytoplasm and 
maintains actin cytoskeleton integrity [32]. Sirt1 also 
deacetylates the transcription factor Yin Yang 1 (YY1) to 
improve HG-induced epithelial-mesenchymal transition 
(EMT) [33]. Acetylation of high-mobility group box  1 
(HMGB1) protein is a crucial process prior to its transfer 

from the nucleus to the cytoplasm and extracellular 
secretion in renal cells, which accelerates the progression 
of renal disease. Sirt1 deacetylates the HMGB1 lysine 
site and inhibits downstream inflammatory transmission 
[34]. Ferroptosis is an iron-dependent process of lipid 
peroxidation, and p53 is involved in the regulation of 
ferroptosis. In a renal fibrosis model, p53 expression and 
acetylation levels increased, whereas Sirt1 inhibited the 
progression of ferroptosis by inducing deacetylation of 
p53 [35]. Compared with young mice (5 weeks old), aged 
mice (24 months old) exhibited reduced Sirt1 expression. 
They exhibited higher deposition of extracellular 
matrix (ECM), and overexpression of Sirt1, through 
deacetylation of hypoxia-inducible factor-1 (HIF-1α), 
effectively alleviated hypoxia-induced ROS production, 
mitochondrial damage, and ECM protein production, 
with a protective effect on the tubulointerstitium of aged 
kidneys [36].

In addition to deacetylation, Sirt1 is involved in 
additional modifications, such as phosphorylation, 
ubiquitination, and other critical physiological and 

Fig. 1   Location and distribution of sirtuins. NR, nicotinamide riboside; NMN, nicotinamide mononucleotide; NAD+, nicotine adenine dinucleotide; 
NAM, nicotinamide; iNAMPT, intracellular nicotinamide phosphoribosyltransferase; Nmnat, nicotinamide mononucleotide adenylyltransferase. 
(Created with BioRender.com).
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pathological processes. Sirt1 induces p65 nuclear factor 
kappa B (NF-κB) and signal transducer and activator 
of transcription (STAT)-3 dephosphorylation and 
deacetylation, reducing the inflammatory response, 
oxidative stress, and EMT in DKD [37]. In a unilateral 
ureteral obstruction (UUO) mouse model, activation 
of Sirt1 signaling was accompanied by an increase in 
phosphorylated endothelial nitric oxide synthase (eNOS) 
levels, and Sirt1 interacted with eNOS to improve the 
UUO model for scoring renal fibrosis [38]. Oxidative 
stress in DKD leads to Sirt1 ubiquitination, which 
promotes Sirt1 degradation, whereas inhibition of Sirt1 
ubiquitination promotes Foxo3a nuclear translocation 
and attenuates oxidative stress injury in the kidneys of 
DKD mice [8].

Various glomerular and tubular lesions are closely 
associated with dysfunctional autophagy [39]. The Sirt1/

AMP-activated protein kinase (AMPK)/mammalian 
target of rapamycin (mTOR) pathway reduces urinary 
protein levels by regulating autophagy, reducing 
renal inflammation, immune complex deposition and 
excretion, and improving renal function in systemic lupus 
erythematosus nephritis [40]. In addition, Sirt1 is involved 
in activating PTEN-induced kinase 1 (PINK1)/Parkin-
associated mitochondrial autophagy and is an effective 
therapeutic strategy for preventing renal fibrosis [41]. 
H2AX phosphorylation is a key signal in the DNA damage 
response. It has been shown that Sirt1 directly mediates 
the phosphorylation of H2AX through deacetylation [42]. 
In addition, Sirt1 interacts with the PP4 phosphatase 
complex to indirectly regulate the phosphorylation of 
γH2AX and RPA2, ensuring comprehensive control of 
DNA damage [43]. Sterile alpha motif and HD domain-
containing protein 1, upon deacetylation by Sirt1, binds 
to single-stranded DNA at the DSB, thus promoting 

Fig. 2   Primary targets and cellular processes regulated by sirtuins in kidney diseases. HMGB1, high-mobility group box 1; HIF-1ɑ, hypoxia-inducible 
factor-1; STAT3, signal transducer and activator of transcription 3; YY1, Yin yang 1; eNOS, endothelial nitric oxide synthase; AMPK, AMP-activated 
protein kinase; mTOR, mammalian target of rapamycin; PINK1, PTEN-induced kinase 1; H3K56, histones3 lysine56; Nrf2, nuclear factor-erythroid 
2-related factor 2; HO-1, heme oxygenase-1; ERK, extracellular signal-regulated kinase; NF-κB, nuclear factor kappa B; SOD, superoxide dismutase; 
PGC-1ɑ, peroxisome proliferator-activated receptor-gamma coactivator 1-alpha; NLRP3, NOD-like Receptor Pyrin Domain Containing 3; DRP1, 
dynamin-related protein 1; OPA1, optic atrophy 1; JNK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase. (Created with BioRender.
com)



Page 5 of 21Jin et al. Cell Communication and Signaling          (2024) 22:114 	

DNA end resection and homologous recombination, and 
participating in the maintenance of genome stability [44] .

Sirt6
Sirt6 is a nuclear protein associated with DNA repair in 
single-strand breaks (SSBs) and DSBs. Sirt6 knockout 
mice exhibit chromatin abnormalities and shortened 
lifespans, suggesting a defects in DNA repair [45]. 
DNA repair efficiency decreases with age, and Sirt6 
overexpression rescues senescent cells from DSB 
repair efficiency and improves homologous and non-
homologous recombinant DSB repair pathways [46, 47]. 
More importantly, it has been proposed that Sirt6 is 
independent of known sensors and signalling pathways 
and is directly translocated to the site of DNA damage, 
accompanied by ataxia-telangiectasia mutated (ATM) 
kinase, recruitment of homologous recombination and 
non-homologous end-joining pathway proteins, and 
phosphorylation of H2AX, with concomitant activation 
of downstream pathways associated with DSB repair 
[48]. For example, Sirt6 coordinates with the chromatin 
remodeller CHD4 to promote chromatin relaxation 
during DNA damage, which in turn accurately regulates 
the process of homologous recombination and promotes 
the repair of DNA [49]. Sirt6 also acts synergistically with 
Sirt1, which deacetylates Sirt6 on residue K33, whereas 
the deacetylated Sirt6 is then anchored to γH2AX, 
which allows it to be retained in the local chromatin 
and remodel the chromatin [50]. Sirt6 exhibits three 
catalytic enzymatic activities: deacetylation, deacylation, 
and mono-ADP-nucleotidylation. Histone 3 lysine 9 
(H3K9) and H3K56 are common histone substrates 
deacetylated by Sirt6 [51]. Sirt6 plays a critical role in 
telomere maintenance by deacetylating histone H3K9, 
thereby preventing telomeric DNA damage and cellular 
senescence [52]. Deacetylation of histone H3K56 
regulates β-catenin-related genes, represses transcription 
of fibre-related genes, and regulates renal interstitial 
fibrosis [53]. Sirt6 also deacetylates non-histone proteins 
in the nucleus and cytoplasm, including members of 
the FOXO family, p53, Smad, and NAMPT [54]. Sirt6 
regulates renal interstitial fibrosis by deacetylating runt-
related transcription factor 2 (Runx2), promotes Runx2 
translocation out of the nucleus, mediates activation 
of the ubiquitin-protease system, causes degradation 
of Runx2, and inhibits vascular calcification in chronic 
kidney diseases (CKD) [55]. In addition, Sirt6 physically 
associates with poly(ADP-ribose) polymerase 1 (PARP1) 
and mono-ADP-ribosylates PARP1 at lysine residue 521, 
thereby stimulating the poly-ADP-ribosylase activity of 
PARP1 and exhibiting ADP-ribosyltransferase activity 
[56], suggesting that Sirt6 is a multifunctional epigenetic 
enzyme. Additionally, Sirt6 is a target for acetylation 

of Sirt1, and the two act synergistically to maintain 
homeostasis in the organisms [57].

Sirt6 is upregulated during calorie restriction and is 
involved in the expression of genes involved in oxidative 
stress, inflammation, autophagy, and energy metabolism 
by regulating related targets [58]. In the glomeruli of 
patients with hypertensive nephropathy, an increase in 
DNA DSBs is accompanied by a decrease in Sirt6 expres-
sion. In contrast, overexpression of Sirt6, which increases 
the levels of nuclear factor-erythroid 2-related factor 2 
(Nrf2), and haeme oxygenase-1 (HO-1), inhibits Ang II-
induced ROS generation and DSBs in DNA and plays an 
essential role in alleviating Ang II stimulation-induced 
oxidative DNA damage [12]. Renal interstitial fibrosis is a 
common pathophysiological condition in chronic kidney 
disease. Overexpression of Sirt6 delays the progression 
of renal interstitial fibrosis in CKD by targeting home-
odomain-interacting protein kinase 2, as evidenced by 
collagen deposition and reduced expression of collagen 
I and α-smooth muscle actin [59]. In DKD mice, Sirt6 
expression is reduced, and AMPK is dephosphorylated 
with abnormal mitochondrial function, whereas, Sirt6 
overexpression increases AMPK phosphorylation levels, 
suggesting that Sirt6 inhibits mitochondrial dysfunction 
in DKD by regulating AMPK [60]. In addition, Sirt6 over-
expression also ameliorated the Ang II-induced changes 
in the balance between mitochondrial fusion and fission 
[61]. Progressive EMT in the kidneys of db/db mice is 
associated with Sirt6 downregulation, and reduced Sirt6 
levels lead to progressive renal injury, such as tubular 
injury. Further studies have revealed that Sirt6 binds 
directly to Smad3 and, through deacetylation, inhibits its 
nuclear accumulation and transcriptional activity in cells 
and protects against renal injury in DKD [62]. In AKI, 
autophagy is inhibited and overexpression of Sirt6, which 
mediates autophagy activation, results in an increased 
expression of light chain 3 II and an increased lysosome/
autophagosome ratio, as well as decreased p62 expres-
sion, indicating a protective effect against acute kidney 
injury [63]. Knockdown of Sirt6 exacerbates cisplatin-
induced kidney injury, and further studies have revealed 
that Sirt6 binds to the promoter of extracellular signal-
regulated kinase (ERK)1/ERK2 and deacetylates histone 
H3K9, thus inhibiting ERK1/2 expression, regulating the 
inflammatory response in kidney injury and providing 
a new therapeutic target for kidney injury under stress 
[64]. Sirt6 also binds to saturated fatty acids, especially 
palmitic acid, promoting their nuclear export, inducing 
acyl-CoA synthetase long-chain 5 deacetylation, and pro-
moting fatty acid oxidation (FAO), suggesting that Sirt6 is 
not restricted to the nucleus to play a metabolic regula-
tory role and provides a reference for its study in kidney 
diseases [65].
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Sirt7
Sirt7 is a nuclear-localised deacetylase that plays essential 
roles in inflammation, apoptosis, metabolic homeostasis, 
DNA damage repair, ribosome biogenesis, mitochondrial 
biogenesis, and glucose homeostasis [66]. Sirt7 interacts 
with and deacetylates HMGB1, redistributes HMGB1 to 
the nucleus, and activates its DNA damage repair func-
tion. Nucleophosmin (NPM), as a target of Sirt7, can be 
deacetylated by Sirt7, the deacetylated NPM is trans-
ferred from the nucleolus to the nucleoplasm, binds to 
ubiquitin ligase, and prevents ubiquitination and degra-
dation of p53, which arrests the cell cycle and maintains 
the process of DNA damage repair [67]. After DNA dam-
age, ATM activation involves autophosphorylation, and 
it has been proposed that deacetylation of ATM is a pre-
requisite for its dephosphorylation, wherwas, Sirt7 can 
deacetylate ATM, inhibit ATM from sustained phospho-
rylation and activation, and contribute to DNA damage 
repair [68]. In contrast, Sirt7 deficiency inhibits NF-κB 
phosphorylation, reduces the nuclear translocation of 
p53, and reduces tubular injury and renal inflammation 
[69]. Sirt7 directly reduces NF-κB expression, attenu-
ates cisplatin-induced acute kidney injury, and allevi-
ates renal tubular epithelial cell apoptosis [70]. Systemic 
Sirt7 knockout mice with lower renal K-Cl cotransporter 
(KCC)4 expression under ammonium chloride stimula-
tion exhibited increased metabolic acidosis, and further 
studies have revealed that Sirt7 interacts with KCC4 to 
stabilise and regulate KCC4 activity through deacetyla-
tion and delays the exacerbation of renal metabolic aci-
dosis [71]. Overexpression of Sirt7, which is accompanied 
by downregulation of Sirt7 levels in hypertensive kidney 
injury, promotes Krüppel-like factor 15/Nrf2 signalling 
and effectively alleviates Ang II-induced renal iron death, 
EMT, interstitial fibrosis, and abnormal renal function 
in hypertensive mice, suggesting that targeting Sirt7 is a 
promising strategy for the treatment of hypertensive kid-
ney injury [72]. In addition, Sirt7-deficient mice are pro-
tected against AKI, with reduced nuclear translocation 
and phosphorylation of p65 and reduced inflammatory 
infiltration of renal cells, as evidenced by reduced pro-
teinuria and markers of renal tubular injury [73].

Sirtuin in the cytoplasm
Sirt2
Sirt2 is mainly localised in the cytoplasm but also in 
the mitochondria and nucleus. For example, it shuttles 
into the nucleus during mitosis. It is localised in the 
nucleus as an alternatively spliced heterodimer. In 
normal fibroblasts treated with nuclear export inhibitors, 
Sirt2 was found to be rapidly enriched in the nucleus, 
suggesting that nucleoplasmic shuttling may contribute 
to the nuclear enrichment of Sirt2 [74]. In addition, 

supplementation with β-NMN restored the nuclear 
entry of Sirt2. It rejuvenated senescent oligodendrocyte 
progenitors by promoting their differentiation into 
mature oligodendrocytes, suggesting that the nuclear 
entry of Sirt2 contributes to the alleviation of senescence 
[75].Septin4 is a pro-apoptotic protein and an important 
marker of organ injury, and its function is regulated 
by post-translational modifications. High acetylation 
levels at the K174 site of Septin4 exacerbated Ang 
II-induced oxidative stress-induced hypertensive kidney 
injury. In contrast, overexpressed Sirt2 interacted 
with the GTPase structural domain of Septin4 and 
caused Septin4-K174 deacetylation, which attenuated 
Ang II-induced hypertensive kidney injury [76]. Sirt2 
regulates the acetylation state of p53 at lysine 382, 
contributing to the stabilisation of p53 in the nucleus, 
enhancing transcription, and regulating the DNA 
damage response [77]. Heterodimers, such as breast 
cancer type I susceptibility protein (BRCA1) and BRCA1-
associated RING domain protein I (BARD1), are involved 
in homologous recombination and promote genomic 
integrity. It is proposed that Sirt2 binds to the BRCA1-
BARD1 complex and deacetylates the conserved lysine in 
the BRCA1-BARD1 complex to promote BRCA1-BARD1 
heterodimerization, which promotes its localization 
to DNA damage sites for effective homologous 
recombination [78]. Sirt2 is involved in the regulation 
of proinflammatory responses. Overexpression of Sirt2 
exacerbates cisplatin-induced cellular inflammation, 
apoptosis, and renal injury and increases phosphorylation 
of p38 and c-Jun N-terminal kinase (JNK) in the kidney 
[79]. In contrast, Sirt2 deficiency ameliorated the 
lipopolysaccharide-induced infiltration of neutrophils 
and macrophages, and decreased renal function [80]. 
Further mechanistic studies revealed that knockdown 
of Sirt2 inhibited the phosphorylation of p38 mitogen-
activated protein kinase (MAPK) and JNK. In addition, 
Sirt2 regulates the binding of p65 to CXCL2 and CCL2 
promoters, suggesting that modulation of Sirt2 may be 
an important therapeutic target for inflammatory kidney 
injury [80]. During renal ischemia/reperfusion, activated 
Sirt2 binds to and deacetylates FOXO3a, promotes 
FOXO3a nuclear translocation, activates caspase-8 and 
caspase-3, and triggers apoptosis. In contrast, inhibition 
of Sirt2 reversed these phenomena [81]. The activity 
of Sirt2 contributes to the activation and proliferation 
of renal fibroblasts, while blocking Sirt2 activation 
attenuates the development of renal fibrosis and may 
have therapeutic potential for the treatment of CKD [82].

Sirtuins in the mitochondria
Mitochondria are essential cellular organelles that 
coordinate various metabolic processes. Mitochondrial 
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dysfunction, including altered mitochondrial biogenesis, 
the imbalance between fusion and division processes, 
oxidative stress, cytochrome c, mitochondrial DNA 
release, defective mitochondrial autophagy, and energy 
metabolism, is crucial for the pathogenesis of various 
renal diseases [83]. Nuclear sirtuins mainly regulate 
chromatin, whereas mitochondrial sirtuins mainly 
regulate mitochondrial proteins.

Sirt3
Sirt3 directly deacetylates and activates superoxide dis-
mutase 2 (SOD2), promoting the transcription of SOD2 
and peroxisomes [84]. Sirt3 also induces FOXO3a and 
peroxisome proliferator-activated receptor-gamma 
coactivator 1-alpha (PGC-1ɑ) upregulation, restoring 
MnSOD activity and levels [85]. It also mediates Foxo3a 
deacetylation and nuclear localisation, which in turn 
leads to the activation of Foxo3a-dependent peroxi-
dase expression; reduces Ang II-induced renal fibrosis, 
endothelial-to-mesenchymal transition (EndoMT), and 
oxidative stress; and maintains renal endothelial homeo-
stasis [86].

Oxidative stress is an important factors in calcium 
oxalate-induced kidney stone formation. Sirt3 reduces 
crystal deposition in the kidneys of stone model mice 
by regulating the Nrf2/HO-1 signalling pathway [87]. 
Sirt3 inhibits renal calcium oxalate crystal formation 
by promoting macrophage M2 polarisation via the dea-
cetylation of FOXO1 [88]. Acetylation is an essential 
posttranslational modification of mitochondrial metab-
olism components. In the early stages of renal fibrosis, 
decreased Sirt3 expression is accompanied by increased 
mitochondrial acetylation, and Sirt3 knockout mice are 
prone to mitochondrial protein hyperacetylation, and 
severe renal fibrosis. Deacetylation of mitochondrial pro-
teins by Sirt3 is closely associated with the remission of 
renal fibrosis [15]. For example, SIRT3-mediated dea-
cetylation of OPA1 alleviates mitochondrial dysfunction 
in AKI mice [89]. FAO dysfunction is a crucial factor in 
the development of renal fibrosis. AKI mice exhibit sig-
nificant FAO and lipid deposition, accompanied by high 
ROS production. Furthermore, deletion of Sirt3 exacer-
bated FAO dysfunction and kidney injury in AKI mice. 
Additional mechanistic studies revealed that Sirt3 may 
regulate FAO, repair, and delay renal injury by activating 
AMPK [90].

Sirt3 ameliorates pathological renal injuries such as 
inflammatory cell infiltration, glomerulosclerosis, and 
interstitial inflammation in IgAN mice by mediating 
autophagy to inhibit the activation of the NOD-
like receptor pyrin domain containing 3 (NLRP3) 
inflammasome [91]. Sirt3 attenuates sepsis-induced 
AKI, renal tubular apoptosis, and inflammatory cytokine 

accumulation in the kidney, by regulating the AMPK/
mTOR pathway to induce autophagy [92]. Furthermore, 
SIRT3 induces mitochondrial autophagy by regulating 
the dynamin-related protein 1 (DRP1) pathway to protect 
the kidney from ischemia/reperfusion injury [93]. It 
indirectly eliminates ROS by mediating mitochondrial 
autophagy and exerts antioxidant effects [94].

Sirt4
Sirt4 regulates the posttranslational modifications of 
various proteins by deacetylation, aliphatic amidase, and 
ADP-ribosyl/nucleotidyltransferase, thereby regulating 
various biological functions [95]. Glutamine metabolism 
plays a crucial role in cell growth, and glutamate dehy-
drogenase (GDH) is a critical enzyme that promotes 
the metabolism of glutamate and glutamine to produce 
adenosine triphosphate (ATP). Sirt4 promotes adeno-
sine diphosphate (ADP) ribosylation and downregulates 
GDH activity, inhibiting the conversion of glutamate to 
α-ketoglutarate during the tricarboxylic acid cycle [96]. 
In addition, Sirt4 deficiency leads to decreased expres-
sion and function of the glutamate transporter [97], 
which may be more important than Sirt4 deacetyla-
tion. Sirt4 plays a key role in mitochondrial function 
and the pathogenesis of metabolic diseases, including 
DKD. In DKD, the mRNA and protein levels of Sirt4 
are significantly decreased in glucose-mimicking podo-
cytes in a concentration-dependent manner, and Sirt4 
deficiency activates NF-κB signalling and the NLRP3 
inflammasome, exacerbating renal injury [98]. In con-
trast, overexpression of Sirt4 decreased the expression 
of apoptosis-related proteins, such as Bax and phospho-
rylated p38, and upregulated Bcl-2 expression. It also 
significantly downregulates inflammatory factors, such 
as necrosis factor alpha (TNF-ɑ), interleukin 1 (IL)-1β, 
and IL-6 [99]. Increased FOXQ1 and downregulation of 
Sirt4 have been reported in the db/db mice, and overex-
pression of FOXQ1 further downregulated Sirt4 expres-
sion and exacerbated mitochondrial damage. In contrast, 
knockdown of the FOXQ1 gene induced Sirt4 expression 
and partially restored mitochondrial function [100].

Sirt5
Sirt5 exhibits a strong affinity for negatively charged acyl 
groups, such as glutaric, succinic, and malonic acids; 
catalyses mainly lysine acylation, but also desuccinylates 
and deglutarylates; and has weak deacetylase activ-
ity [101]. Two key molecules regulate Sirt5 activity, and 
overexpression of PGC-1α elevates cellular Sirt5 levels, 
while activation of AMPK downregulates Sirt5 levels 
[102]. Elevated levels of Sirt5 in caloric restriction [103] 
are associated with longevity. Mice deficient in Sirt5 
exhibit defective energy metabolism and reduced ATP 
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production [104]. Mitochondrial sirtuins play key roles in 
mitochondria metabolism by regulating amino acid deg-
radation, cellular respiration, ROS levels, FAO, and glyco-
lysis [105]. Ribose-5-phosphate is required for nucleotide 
synthesis, and it has been found that knockdown of Sirt5 
affects ribose-5-phosphate production, leading to sus-
tained and irreparable DNA damage [106]. p53 is 
involved in the maintenance of genomic stabilisation. In 
response to DNA damage, Sirt5 mediates desuccinylation 
of p53 at lysine 120, thereby inhibiting p53 function [107]. 
Upregulation of Sirt5 expression attenuates mitochon-
drial dysfunction by enhancing AMPK phosphorylation, 
as evidenced by alleviation of mitochondrial structural 
damage, restoration of ATP content, and delayed AKI 
progression [108]. Sirt5 regulates FAO homeostasis in the 
mitochondria and peroxisomes in RTECs and protects 
against AKI injury [109]. Reduced malonylation in the 
renal cortex of db/db mice is associated with increased 
Sirt5 expression. Further metabolomic analysis revealed 
that the reduced alanine-esterified proteins were mainly 
enriched in non-mitochondrial metabolic pathways such 
as glycolysis and peroxisomal FAO. Furthermore, it has 
been experimentally confirmed that Sirt5 overexpres-
sion is accompanied by an increase in aerobic glycolysis, 
leading to altered nutrient partitioning and utilisation in 
DKD [110].

Sirtuins in Kidney Disease
CKD is one of the most prominent causes of death world-
wide in the 21st century. The prevalence of CKD is also 
increasing owing increased risk factors, such as obesity 
and diabetes. Approximately 843.6 million people world-
wide were affected by CKD in 2017. Despite the decrease 
in mortality of patients with end-stage renal disease, the 
Global Burden of Disease Organization study showed 
that CKD is the leading cause of death worldwide [111]. 
Renal diseases manifest as disorders of renal morphology 
structure and function, such as multiple stimuli affecting 
podocytes, endothelial cells, mesangial cells, and RTECs, 
thereby glomerulosclerosis, tubular fibrosis, proteinuria 
formation, and decreased renal function [112]. It is par-
ticularly important to pay attention to the regulation of 
renal cells [113]. The main risk factors of kidney disease 
include age [114], smoking, obesity [115], hypertension 
[116], diabetes [117], cardiovascular disease [118], hyper-
uricemia [119], and environmental factors [120]. Nota-
bly, sirtuins modulate most of these risk factors [23], and 
slow the progression of renal nephropathy by regulating 
metabolic homeostasis, autophagy, apoptosis, mitochon-
drial biogenesis, and oxidative stress; improving serum 
creatinine and blood urea nitrogen levels and reducing 
proteinuria [121–124]. Following is an overview of sir-
tuins in specific renal cells (Figs. 3 and 4) (Table 1).

Podocytes
The epithelial cells of the visceral glomerular layer, i.e., 
podocytes, are terminally differentiated cells that emit 
secondary protrusions (foot process) that interlock and 
occlude each other to form a “zipper-like” septum struc-
ture, which together with endothelial cells and glomerular 
basement membrane forms the glomerular filtration bar-
rier and maintains normal filtration function. Under the 
influence of external factors such as mechanical stress, 
immune mediators, oxidative stress, and abnormal accu-
mulation of metabolites, podocytes are damaged, result-
ing in structural changes in the septum protein complex, 
dysfunction of the actin skeleton, and damage to the top 
negative charge barrier, leading to increased podocyte 
activity, fusion of the foot process and increased apopto-
sis [125]. When damaged podocytes are shed, parts of the 
basement membrane are exposed, glomerular filtration 
barrier integrity is disrupted, and a high degree of pro-
teinuria develops [126]. Various CKD cases with protein-
uria as the primary manifestation, including microscopic 
lesion nephropathy, focal segmental glomerulosclerosis, 
membranous nephropathy, immunoglobulin A (IgA) 
nephropathy, and DKD, are closely associated with podo-
cyte injury [127, 128].

Sirtuins exert pleiotropic protective effects on 
podocytes, including inflammation, autophagy, lipid 
metabolism, mitochondrial dysfunction, apoptosis, 
and oxidative stress. Mice with podocyte-specific Sirt1 
knockdown increase their inflammation-related markers 
and exacerbate NLRP3 inflammatory vesicle activation, 
leading to increased glomerulosclerosis and proteinuria 
[129, 130]. The above phenomena can be reversed by 
Sirt1 overexpression [131], consistent with Sirt4 studies, 
where Sirt4 activation inhibits NF-κB signalling and 
NLRP3 inflammatory vesicles, increases podocyte 
nephrin expression and decreases podocyte pyroptosis 
[98]. Similarly, Sirt6-deficient mice exhibit more 
severe podocyte hypertrophy, loss of peduncles, and 
reduced septin cleavage, exacerbating the progression 
of proteinuria [132]. Activation of Sirt1 reduces the 
acetylation of NF-κB p65, increases beclin1 expression, 
promotes autophagy, and reduces EMT [133]. Sirt6 
deacetylates histone H3K9 to inhibit the transcription of 
Notch1 and Notch4 and the Notch pathway to enhance 
autophagy [14]. Sirtuins are key transcription factors 
that regulate lipid metabolism. Biological analysis of 
clinical samples suggests that Sirt6 is involved in Ang 
II-induced glomerular cholesterol dysregulation and 
that Sirt6 deficiency in podocytes exacerbates Ang 
II-induced renal injury and attenuates urinary protein. 
Sirt6 affects cholesterol efflux in podocytes by regulating 
the expression of ATP-binding cassette transporter G1 
[134]. The reduction of Sirt1 increases sterol regulatory 
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element binding protein 1 (SREBP1) acetylation, which 
induces lipid synthesis and phosphorylates SREBP1, 
thus eliminating the inhibition of lipid synthesis [135]. In 
addition, Sirt1 mediates PGC-1α inhibition of acetyl-CoA 
carboxylase 2, attenuating HG-induced insulin resistance 
and lipotoxicity-mediated damage to podocytes [136].

Increasing evidence has shown that mitochondrial 
dysfunction is a crucial driver of HG-induced podocyte 
injury. Sirt1 expression has been reported to be reduced 
in HG-treated podocytes, and phosphorylation levels are 
significantly upregulated at the S47 locus, accompanied 
by downregulation of synaptopodin and nephrin. ROS 
levels and cytochrome c release exacerbate mitochondrial 
dysfunction [137]. Sirt6 knockdown exacerbated 
HG-induced reduction of mitochondrial numbers, 
increased mitochondrial superoxide production, and 

decreased mitochondrial membrane potential, which 
exacerbated mitochondrial division through DRP1 
phosphorylation, whereas Sirt6 overexpression increased 
AMPK phosphorylation, attenuated HG-induced 
apoptosis of podocytes and oxidative stress, and 
improved Ang II-induced changes in the balance between 
mitochondrial fusion and division [60, 61]. In addition, 
Sirt1 protects podocytes by deacetylating cortactin, 
thereby maintaining actin cytoskeleton integrity [32]. 
Sirt3 acts as a mitochondrial sirtuin, and Sirt3-deficient 
mice exhibit earlier and more severe proteinuria with 
podocyte and mitochondrial dysfunction after a high-
fat diet [138]. Silencing Sirt7 promoted HG-induced 
podocyte apoptosis, whereas Sirt7 overexpression 
attenuated it [139]. Overexpression of Sirt4 also inhibited 
apoptosis, downregulated the expression of Bax and 

Fig. 3   Molecular role of sirtuins in podocytes, endothelial cells, and mesangial cells. NF-κB, nuclear factor kappa B; SREBP1, sterol regulatory 
element-binding protein 1; H3K9, histones3 lysine9; Nrf2, nuclear factor-erythroid 2-related factor 2; eNOS, endothelial nitric oxide synthase; NLRP3, 
NOD-like Receptor Pyrin Domain Containing 3; SOD, superoxide dismutase; ROS, reactive oxygen species; HIF-1ɑ, hypoxia-inducible factor-1; FOXO, 
forkhead box O. (Created with BioRender.com)
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phosphorylated p38, upregulated the expression of Bcl-
2, increased mitochondrial membrane potential, and 
reduced ROS production, in addition to also significantly 
attenuating the inflammatory response, as evidenced by 

decreased levels of TNF-ɑ, IL-1β, and IL-6 [99]. DNA 
DSBs are closely associated with the development of renal 
disease. In the glomeruli of patients with hypertensive 
nephropathy, an increase in DNA DSBs is accompanied 

Fig. 4   Molecular role of Sirtuins in proximal tubular epithelial cell, macrophages. SOD, superoxide dismutase; PINK1, PTEN-induced kinase 1; 
PGC-1ɑ, peroxisome proliferator-activated receptor-gamma coactivator 1-alpha; NF-κB, nuclear factor kappa B; Nrf2, nuclear factor-erythroid 
2-related factor 2. (Created with BioRender.com)

Table 1  Sirtuins in renal component cells

Cell types Sirtuins Mechanisms

Podocytes Sirt1, Sirt3, Sirt4, Sirt6, Sirt7 Inflammation, autophagy, lipid metabolism, mitochondrial dysfunction, actin 
cytoskeleton, apoptosis, oxidative stress, DNA damage, insulin resistance

Endothelial cells Sirt1, Sirt3, Sirt6 Endothelial disfunction, inflammation, apoptosis, oxidative stress, fibrosis, aging, 
metabolic reprogramming

Mesangial cells Sirt1, Sirt6 Fibrosis, inflammation, oxidative stress

Renal tubular epithelial cells Sirt1, Sirt2, Sirt3, Sirt4, Sirt5, Sirt6, Sirt7 Inflammation, fibrosis, apoptosis, oxidative stress, autophagy, mitochondrial 
dysfunction, mitophagy, G2/M phase arrest

Macrophages Sirt1, Sirt3, Sirt6 Inflammation, macrophage infiltration and activation
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by a decrease in Sirt6 expression. Similar results have 
been observed in rat kidneys infused with Ang II and in 
cultured podocytes stimulated with Ang II. In contrast, 
Sirt6 overexpression inhibited Ang II-induced ROS 
generation and DNA DSBs, thus protecting against Ang 
II-induced podocyte apoptosis [12]. Compared to other 
sirtuins, Sirt5 has been less studied in kidney podocytes.

Endothelial cells
Endothelial cells in the kidney, podocytes, and the base-
ment membrane form the glomerular filtration mem-
brane barrier. Endothelial cells are also a part of the renal 
vasculature. Defects in the endothelium of the kidney 
lead to changes in its structure and function, thereby dis-
rupting the glomerular filtration barrier and contributing 
to the formation of proteinuria. Sirt1 depletion in vascu-
lar endothelial cells mediates endothelial dysfunction and 
premature aging in renal disease. Mice with endothelial 
Sirt1-specific knockouts exhibit impaired endothelium-
dependent vasodilation and angiogenesis, and low lev-
els of fibrosis can spontaneously develop at a young age 
[140]. Furthermore, endothelial Sirt1 dysfunction leads to 
the activation of endothelial notch1 signalling, resulting 
in peritubular capillary sparing and fibrosis after kidney 
injury. In contrast, overexpression of Sirt1, which inhibits 
notch1 signalling, antagonizes fibrosis [141]. Sirt1 in vas-
cular smooth muscle cells reprograms endothelial cells 
to inhibit angiogenesis after ischemia [142], which main-
tains the differentiated phenotype of vascular smooth 
muscle cells and protects them from stress-induced vas-
cular remodelling.

Recently, EndoMT has been recognised as a critical 
factor in promoting fibrosis in chronic kidney disease. 
In hypertensive kidney injury, Sirt3 expression is signifi-
cantly reduced, accompanied by an increase in EndoMT 
induction, ROS, renal fibrosis, and renal inflammatory 
cell infiltration, as well as decreased telomerase expres-
sion [143], which is also consistent with the findings of 
Sirt7 [144]. Although endothelial cells overexpress-
ing Sirt3 reduced Ang II-induced renal fibrosis and 
EndoMT, further mechanistic studies revealed that this 
was achieved through the SIRT3-Foxo3a-peroxidase 
pathway, thereby maintaining endothelial homeosta-
sis [86]. Sirt1 promotes p53 deacetylation, reduces p53 
deacetylation levels, upregulates Bax and Bcl-2 levels, 
and reduces apoptosis [145], in addition to increasing 
the level of phosphorylated endothelial nitric oxide syn-
thase [38] and inhibiting EndoMT development. Sirt6 
deacetylates histone H3K9, inhibits NK3 homeobox  2 
transcription, induces the expression of GATA-binding 
protein 5 (GATA5), which is a novel regulator of blood 
pressure, and reduces endothelial cell senescence. It pro-
motes autophagy and prevents endothelial damage [146]. 

Endothelial cell Sirt3 deficiency also stimulates trans-
forming growth factor beta (TGF-β)/Smad3-dependent 
mesenchymal transition in RTECs, thereby contributing 
to metabolic reprogramming and fibrosis [147].

Mesangial cells
Glomerular mesangial cells (GMCs) are stromal cells 
that are important for internal environmental stability 
and injury response. Increasing evidence suggests that 
MCs, such as stromal fibroblasts, pericytes, and vascu-
lar smooth muscle cells, determine tissue architecture 
and regulate developmental processes and cell fates. Fur-
thermore, by crosstalk with adjacent cells and indirectly 
through stromal remodelling, stromal cells can regu-
late various processes, such as immune, inflammatory, 
regenerative, and maladaptive fibrotic responses. MCs 
support capillaries within the glomerulus and extend 
into the extraglomerular region called extraglomerular 
mesangial cells [148]. Most studies to date have proposed 
that sirtuins are beneficial to the kidney. Treatment of 
GMCs with advanced glycation end-products resulted 
in decreased protein expression and activity of Sirt1, 
accompanied by increased levels of fibronectin (FN) and 
TGF-β1 in a dose- and time-dependent manner, and inhi-
bition of Sirt1 activity further induced the production 
of FN and TGF-β1. In contrast, overexpression of Sirt1 
significantly enhanced the activity of the kelch-like ECH-
associated protein 1 (Keap1)/Nrf2/antioxidant response 
element (ARE) pathway, including decreasing the expres-
sion of Keap1; promoting the ability and transcriptional 
activity of Nrf2 to bind to the ARE; increasing the pro-
tein level of HO-1, a target gene of Nrf2; and ultimately 
inhibiting the overproduction of ROS and alleviating the 
accumulation of FN and TGF-β1 in GMCs of advanced 
glycation end-products (AGEs)-treated GMCs [149, 
150]. The effects of Sirt6 were similar to those of Sirt1, 
and the excessive upregulation of Sirt6 effectively inhib-
ited proliferation, migration, fibrosis, and the inflam-
matory response in high glucose-induced rat mesangial 
cells [151]. Sirt1 in MCs directly induces Foxo3a to exert 
antioxidant effects and attenuate oxidative stress dam-
age in GMCs [8]. Overexpression of Sirt1, which inhibits 
HIF-1ɑ expression, suppresses inflammation and fibrosis 
in rat GMCs cultured with HG [152]. However, it has also 
been proposed that upregulation of Sirt1 expression in 
MCs promotes cyclooxygenase-2 expression, enhances 
prostaglandin E2 biosynthesis, and promotes glomerular 
inflammation [153].

Renal tubular epithelial cells
Under physiological conditions, Small protein molecules 
are reabsorbed by the proximal renal tubular epithelium. 
In progressive kidney disease, the degree of proteinuria is 
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positively correlated with the degree of tubular damage, 
and structural changes and dysfunction of the tubules 
due to various factors play essential roles in the decline in 
renal function caused by proteinuria, which is an impor-
tant driver of the progression of chronic kidney disease. 
Calorie restriction contributes to elevated levels of Sirt1 
expression in RTECs [154]. Renal fibrosis is an essential 
pathological change associated with progressive kidney 
disease and EMT is a crucial features of renal fibrosis. The 
deletion of Sirt6 in proximal RTECs exacerbates UUO-
induced tubular injury and ECM deposition, and further 
studies have revealed that proximal tubular Sirt6 may 
play an essential role in UUO-induced tubular interstitial 
inflammation and fibrosis by regulating Sirt6-dependent 
β-catenin acetylation and ECM protein promoter tran-
scription [155]. Sirt1 plays a key role in UUO-induced 
tubular interstitial inflammation and fibrosis by deacety-
lating FoxO1 to inhibit the ROS pathway and by deacety-
lating Smad4 to inhibit the TGFβ/Smad pathway [156], 
in addition to reducing HIF-1ɑ activity by deacetylating 
HIF-1ɑ and decreasing the expression of ECM compo-
nents, such as FN, collagen type I and collagen type IV, 
ultimately reducing renal EMT and diabetic tubulointer-
stitial fibrosis [157].

Sirt6 depletion exacerbates hypoxia-induced renal 
tubular injury and G2/M phase arrest. Sirt6 over-
expression has been reported to attenuate hypoxia-
induced injury and G2/M phase arrest in RTECs [158]. 
Autophagy is a cellular self-renewal process that requires 
lysosomal degradation and is used to maintains cellular 
energy homeostasis. p53 deacetylation is promoted by 
Sirt1, which enhances autophagy in RTECs and attenu-
ates sepsis-induced AKI [159]. In addition, Sirt1 is 
involved in PINK1/Parkin-related activation of mito-
chondrial autophagy and inhibits apoptosis and scorch-
ing of RTECs, thereby reducing sepsis-induced AKI 
[160]. Sirt3 induces autophagy by regulating the AMPK/
mTOR pathway, thereby protecting the renal tubular epi-
thelium against caecal ligation and puncture-induced 
damage to the renal tubular epithelium [92]. RTECs 
require high levels of energy and are dependent on the 
mitochondria for their energy supply. Sirt3, 4, and 5 are 
sirtuins localised in the mitochondria and are closely 
associated with renal tubular epithelial injury and repair. 
In DKD, Sirt4 expression is decreased with mitochon-
drial dysfunction [100]. Sirt5 depletion impairs ATP pro-
duction, decreases mitochondrial membrane potential, 
and drives mitochondrial division in RTECs [161]. Sirt5 
regulates the balance between mitochondrial and per-
oxisomal FAO in proximal RTECs to protect against AKI 
[109]. Sirt1, through deacetylation, activates PGC-1α, 
induces Nrf1 production, and participates in mitochon-
drial biogenesis [162]. The Sirt1/p53 axis also decreases 

mitochondrial swelling and mitochondrial cristae disor-
ganisation, increases mitochondrial membrane potential, 
and elevates ATP content [163]. Sirt3 induces mitochon-
drial autophagy, fusion, and division through the regula-
tion of DRP1 pathway homeostasis and mitochondrial 
dynamics to protect the kidney from ischaemia-reperfu-
sion injury [93, 164, 165].

In contrast to other sirtuin members, Sirt2 regulates 
proinflammatory immune responses. When Sirt2 is acti-
vated during renal ischemia/reperfusion, it can bind to 
and deacetylate FOXO3a, thereby enhancing FOXO3a 
nuclear translocation, accompanied by caspase-8 and 
caspase-3 activation, thus promoting apoptosis of RTECs 
[81]. Inhibition of Sirt2 expression promotes the expres-
sion of mitogen-activated protein kinase phosphatase-1 
and downregulates JNK and p38 phosphorylation, 
thereby alleviating renal tubular epithelial cell apoptosis, 
pyroptosis, and inflammation [79]. Similarly, in mice with 
Sirt7-specific knockout in RTECs, ischaemia-reperfusion 
resulted in reduced proteinuria, tubular injury markers, 
and inflammatory infiltration [73].

Macrophages
Macrophages are present in the glomeruli and inter-
stitium at all stages of renal disease. In DKD mice, the 
accumulation and activation of macrophages triggered 
glomerular and tubular damage, induced renal inflam-
mation, and increase the expression of fibrotic factors 
[166]. Furthermore, exosomes from RTECs contribute 
to macrophage infiltration and activation, thus providing 
new insights into renal tubular interstitial macrophages 
[167]. Interestingly, the number of tubulointerstitial mac-
rophages predicts renal dysfunction compared to glo-
merular macrophages [168]. Renal macrophages play an 
essential role in the pathogenesis of kidney disease and 
are potential therapeutic targets for kidney injury and 
fibrosis [169]. White adipose tissue plays an essential 
role in the development of renal metabolic disorders, and 
increasing the activity of Sirt1 by activators alleviates the 
free fatty acid (FFA)-induced inflammatory response in 
macrophages and inflammation in white adipose tissue 
[170]. Sirt3 inhibits the formation of renal calcium oxa-
late crystals by promoting M2 polarization via the dea-
cetylation of FOXO1 [88]. Similarly, overexpression of 
Sirt6 promotes M2 macrophage conversion and alleviates 
renal injury in patients with DKD. In  vitro experiments 
with macrophages and podocytes found that glucose 
promoted macrophage M1 transformation and podocyte 
apoptosis in a dose-dependent manner and attenuated 
Sirt6 expression. After successful transfection of mac-
rophages with the Sirt6-overexpression plasmid, mac-
rophages were transformed into the M2 phenotype, and 
Sirt6 was overexpressed in podocytes. Furthermore, in 
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the Transwell™ co-culture system, Sirt6 overexpression in 
macrophages, but not Sirt6 overexpression in podocytes, 
protected podocytes from HG-induced injury. However, 
apoptosis of podocytes overexpressing Sirt6 (induced 
by transfection with Sirt6-overexpression plasmid) 
remained elevated when co-cultured with macrophages 
in HG medium. Sirt6 has been reported to protect podo-
cytes from injury in a simulated DKD microenvironment 
by activation of M2 macrophages [171].

Sirtuin regulators
Given that sirtuins are involved in a variety of cell-medi-
ated biological processes in the kidney and can serve as 
targets for the prevention and treatment of age-related 
diseases, including kidney disease, the following is an 
overview of selected sirtuin modulators that are of great-
est relevance to kidney disease (Tabl 2).

Natural sirtuin agonists
Natural products have a rich history of use as treatments 
for various human diseases. Most sirtuin activators are 
natural polyphenolic products, and resveratrol was the 
first natural Sirt1 activator to be reported [184]. Resvera-
trol attenuates proteinuria and reduces malondialdehyde 
levels in diabetic mice, in addition to increasing renal 
cortical Mn-SOD activity, inhibiting apoptosis of glomer-
ular podocytes and RTECs, improving pathological man-
ifestations, and restoring Sirt1 and PGC-1α expression 
in the renal tissues of DKD mice. In HG-exposed podo-
cytes, resveratrol inhibited the production of excess ROS 
and apoptosis. In addition, resveratrol directly reduces 
mitochondrial ROS production, improves the activity 
of respiratory chain complexes I and III, increases mito-
chondrial membrane potential, and inhibites the release 
of cytochrome C from the mitochondria to the cyto-
plasm [172]. Other polyphenols and natural compounds, 
such as curcumin, silybin, honokiol, and quercetin, have 
also been shown to regulate sirtuins. Curcumin, a poly-
phenol isolated from turmeric, regulates oxidative stress 
and mitochondrial damage and delays the onset and 
progression of aristolochic acid nephropathy by activat-
ing the SIRT1/Nrf2/HO-1 signalling pathway [174]. Sily-
marin, a pharmacological activator of Sirt3, can protect 
against cisplatin-induced apoptosis of RTECs and AKI by 
improving mitochondrial function [175]. As a small-mol-
ecule polyphenol, treatment with honokiol restored Sirt3 
expression, improved AMPK activity in RTECs exposed 
to cisplatin, preserved DRP1 phosphorylation at Ser637, 
and prevented its translocation into mitochondria, 
thereby preventing mitochondrial fragmentation and 
subsequent cell injury and death [176]. Quercetin has 
been reported to reduce RTECs senescence and alleviate 
renal fibrosis by activating Sirt1/PINK1/Parkin-mediated 

mitochondrial phagocytosis [41]. Isoliquiritigenin, a nat-
ural flavonoid dependent on Sirt1, protects against DKD 
injury and inhibits inflammation and oxidative stress. 
Molecular docking has demonstrated that isoliquir-
itigenin binds directly to Sirt1 and regulates the MAPK 
and Nrf-2 signalling pathways to neutralise inflammatory 
responses and oxidative stress and reverse the deteriora-
tion of renal function and renal fibrosis [177]. Isoliquiriti-
genin also inhibits inflammation by activating Sirt-1 and 
regulating the activities of NF-κB and NLRP3, thereby 
attenuating collagen deposition in DKD and preserving 
renal structure and function [178].

Synthetic sirtuin agonists
Given the critical role of sirtuin activation in age-related 
diseases including kidney diseases, many sirtuin-related 
compounds with high affinities have been synthesised. 
Examples include SRT1720, SRT3025, and MDL-800. 
SRT1720 activates Sirt1 and has been reported to reduce 
p65 acetylation, enhance autophagy in HG-induced 
podocyte EMT, reverse renal fibrosis, and improve renal 
function [133]. SRT3025 also activates Sirt1 and has been 
reported to reverse the increase in collagen production 
due to TGF-β1 stimulation, reduce glomerulosclerosis 
and tubulointerstitial fibrosis, and attenuate the decrease 
in the glomerular filtration rate and proteinuria [179]. 
Additionally, as an activator of Sirt1, SRT2183 increased 
the tolerance of renal medullary interstitial cells to oxi-
dative stress and reduced renal apoptosis and fibrosis in 
a mouse model of UUO kidney injury through a Sirt1-
mediated increase in cyclooxygenase-2 (COX2) expres-
sion in renal medullary interstitial cells [180]. The Sirt6 
activator MDL-800 has been reported to attenuate UUO-
induced tubulointerstitial inflammation and fibrosis. 
In vitro experiments have shown that MDL-800 reduced 
TGF-β1-induced myofibroblast activation and ECM pro-
duction by modulating Sirt6-dependent β-catenin acety-
lation and the TGF-β1/Smad signalling pathway [155].

NAD+ promoter
Sirtuins play an essential role by activating the conversion 
of NAD+ to NAM, which then becomes NMN through 
the action of the transferase iNAMPT, which in turn 
can be converted to NAD+, forming a cycle in which 
NAD+ plays an important role [5]. Two methods exist 
to enhance the level of NAD+; direct restoration of 
NAD+ levels by NAD+ precursor supplementation, and 
overexpression of two enzymes related to NAD+ synthesis, 
NAMPT and NMNAT, to enhance the rate of NAD+ 
synthesis. The NAD+ precursor supplements include 
NMN and nicotinamide riboside (NR). NMN attenuated 
the rate of NAD+ synthesis in adriamycin-treated mice 
with increased urinary albumin excretion, attenuated 
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glomerulosclerosis, reduced Sirt1 expression, and elevated 
claudin-1 expression in mouse kidneys. In addition, 
the NAD+ concentration in the kidney increased [181]. 

Short-term NMN supplementation increases renal NAD+ 
concentration, enhances Sirt1 function, and alleviates the 
onset of DKD by downregulating Claudin-1 expression 

Table 2  Sirtuins as modulators in kidney diseases

Abbreviations: NMN nicotinamide mononucleotide, NR nicotinamide riboside, RTECs renal tubular epithelial cells, DKD diabetic kidney disease, AKI acute kidney injury, 
STZ streptozotocin, UUO unilateral ureteral obstruction, CKD chronic kidney diseases, PGC-1ɑ peroxisome proliferator-activated receptor-gamma coactivator 1-alpha, 
PINK1 PTEN-induced kinase 1, Nrf2 nuclear factor-erythroid 2-related factor 2, HO-1 heme oxygenase-1, AMPK AMP-activated protein kinase, MAPK mitogen-activated 
protein kinase, NLRP3 NOD-like Receptor Pyrin Domain Containing 3, NF-κB nuclear factor kappa B, TGF-β transforming growth factor beta, COX2 cyclooxygenase-2, 
NRK-49F cultured renal interstitial fibroblasts, EGFR epidermal growth factor receptor, PDGFRβ platelet-derived growth factor receptor-β

Classification Name Structure Target Cell Disease Effect Pathway References

Natural sirtuin agonists Resveratrol Sirt1 Podocyte DKD Mitochondrial oxida-
tive stress

Sirt1/PGC-1α [172]

Sirt1 / Cadmium-induced 
nephrotoxicity

Mitophagy Sirt1/PINK1/
Parkin

[173]

Curcumin Sirt1 RTECs Aristolochic acid 
nephropathy

Oxidative stress Sirt1/Nrf2/HO-1 [174]

Silybin Sirt3 RTECs Cisplatin-induced 
AKI

Mitochondrial dys-
function, apoptosis

/ [175]

Honokiol Sirt3 RTECs Cisplatin-induced 
AKI

Mitochondrial fission Sirt3/AMPK [176]

Quercetin Sirt1 RTECs Senescence 
and renal fibrosis

Mitophagy Sirt1/PINK1/
Parkin

[41]

Isoliquiriti-
genin

Sirt1 NRK-52E cells STZ-induced DKD Inflammation, oxida-
tive stress

Sirt1/MAPKs, 
Sirt1/Nrf2

[177]

Sirt1 / STZ-induced DKD Inflammation Sirt1/NF-κB; 
Sirt1/NLRP3

[178]

Synthetic sirtuin agonists SRT1720 Sirt1 Podocytes DKD Autophagy Sirt1/NF-κB p65 [133]

SRT3025 Sirt1 NRK-49F cells Senescence 
and renal fibrosis

Fibrogenesis Sirt1/TGF-β [179]

MDL-800 Sirt6 RTECs UUO Inflammation, Fibrosis Sirt6/β-
Catenin;TGF-β1/
Smad

[155]

SRT2183 Sirt1 Renal medullary 
interstitial cells

UUO Oxidative stress, apop-
tosis, fibrosis

Sirt1/COX2 [180]

NAD+ promoter NMN Sirt1 Podocytes Focal glomerulo-
sclerosis

Histone methylation NMN/NAD [181]

DKD Histone methylation Sirt1/Claudin-1 [182]

NR Sirt3 Podocytes CKD Mitochondrial 
Dysfunction, Oxidative 
stress

Sirt3/PGC-1α [183]

Sirtuins inhibitors AGK2 Sirt2 RTECs AKI Apoptosis Sirt2/FOXO3a [81]

Sirt2 NRK-49F cells UUO Fibrosis Sirt2/EGFR/
PDGFRβ

[82]
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through an epigenetic mechanism [182]. Furthermore, 
oral administration of NMN supplementation to healthy 
volunteers for 12 weeks caused no abnormalities in 
physiological and laboratory tests, and no significant 
adverse effects were observed. The NAD+ levels in whole 
blood increased significantly after NMN administration 
[185]. NR supplementation proved beneficial in AKI with 
ischaemia‒reperfusion injury, as evidenced by a slowing 
increase of serum urea nitrogen and creatinine levels 
and tubular damage [186]. Restoration of Sirt3 activity, 
restoration of reduced glomerular numbers, improvement 
of glomerular podocyte density, and sparse density of 
renal capillaries by administration of NR supplementation 
to mothers on a low-protein diet provides a therapeutic 
option to potentially limit the long-term sequelae of a 
reduced kidney number in adulthood [183]. Intracellular 
NAMPT is a critical enzyme in the NAD+ remediation 
synthesis pathway. However, it enables NAD+ self-cycling, 
so activation of NAMPT may combat aging-related 
diseases. For example, NATs, which are more efficient 
and have better bioavailability than NMN and NR, are 
regulated at rate-limiting steps, allowing more flexibility 
to meet the needs of cells in different physiological states 
[187].

Sirtuins inhibitors
In addition to sirtuin activators, several sirtuin-inhibiting 
compounds have been developed to treat various renal 
diseases. Studies have confirmed the involvement of 
Sirt2 in renal fibrosis and inflammation, and inhibitors 
of Sirt2, such as AGK2, and AK-1, have been developed. 
Administration of the Sirt2 inhibitor AGK2 prior to renal 
ischaemia-reperfusion significantly reduced the number 
of apoptotic renal tubular cells and attenuated ultrastruc-
tural damage [81]. The activity of Sirt2 may contribute to 
the activation and proliferation of renal fibroblasts, and 
the Sirt2 inhibitor AGK2 inhibited renal fibroblast activa-
tion and, to a lesser extent, cell proliferation in a dose- 
and time-dependent manner, as evidenced by reduced 
expression of α-smooth muscle actin, collagen I, and 
fibronectin [82]. AK-1 also inhibits Sirt2 to increase Nrf2 
activity and downregulates JNK signalling to reduce oxi-
dative stress [188].

Conclusion
Sirtuins are essential guardians of life and health by 
maintaining genomic stability and protecting cells and 
organisms from various stresses. Furthermore, most sir-
tuin deficiencies lead to cell structure and functional 
disorders that can promote the development of various 
kidney diseases. As summarized above, sirtuins are pre-
sent at abnormal levels in various renal diseases, such as 
AKI, DKD, and CKD, as well as in various cells of renal 

diseases, such as podocytes, mesangial cells, endothelial 
cells, and RTECs. Moreover, regulation of the expression 
or activity of sirtuins has been shown to delay disease 
progression in both cellular and animal models.

Over the past decade, significant efforts have been 
made to develop effective and safe sirtuin modulators. 
Some sirtuins agonists have gradually moved from pre-
clinical to clinical studies, offering new possibilities for 
small-molecule drugs targeting sirtuins. Although sirtuin 
activators and NAD+ promoters have yielded promising 
results in terms of improving various indicators in pre-
clinical studies, such as markers of pathological damage 
in podocytes and RTECs, there is no substantial evidence 
to date that these approaches can improve the progres-
sion of human kidney disease or prevent the occurrence 
of such events. More importantly, the pharmacokinetics 
and therapeutic potential of these sirtuin modulators in 
renal disease are unclear, the pathways through which 
sirtuins act remain to be elucidated, and the safety of 
these drugs is pending the evaluation of more extended 
treatment regimens.

However, the targeting of sirtuins to regulate renal dis-
ease has been mainly been studied in specific cell types. 
Nevertheless, the kidney, as a specific tissue, is a highly 
cooperative system of various cell types, and the various 
mechanisms do not work in isolation but rather interact 
and collaborate. In recent years, an increasing number of 
studies have started to focus on the crosstalk mechanisms 
between different cells in the kidney. For example, Sirt1 
in RTECs alleviates diabetic proteinuria by epigenetically 
suppressing claudin-1 overexpression in podocytes, and 
Sirt1 in RTECs protects diabetic patients from proteinu-
ria by maintaining the NMN concentration around the 
glomerulus, thereby affecting podocyte function [189]. 
Many common signalling pathways in renal cells inter-
act through multiple small molecules, exosomes, and 
cytokines to produce acute biological effects during the 
formation and progression of various pathological pro-
cesses. However, targeting sirtuins to regulate the com-
munication between renal cells requires further study.
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