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Abstract 

Ubiquitination and deubiquitination are important forms of posttranslational modification that govern protein home‑
ostasis. Deubiquitinating enzymes (DUBs), a protein superfamily consisting of more than 100 members, deconjugate 
ubiquitin chains from client proteins to regulate cellular homeostasis. However, the dysregulation of DUBs is report‑
edly associated with several diseases, including cancer. The tumor microenvironment (TME) is a highly complex entity 
comprising diverse noncancerous cells (e.g., immune cells and stromal cells) and the extracellular matrix (ECM). Since 
TME heterogeneity is closely related to tumorigenesis and immune evasion, targeting TME components has recently 
been considered an attractive therapeutic strategy for restoring antitumor immunity. Emerging studies have revealed 
the involvement of DUBs in immune modulation within the TME, including the regulation of immune checkpoints 
and immunocyte infiltration and function, which renders DUBs promising for potent cancer immunotherapy. Never‑
theless, the roles of DUBs in the crosstalk between tumors and their surrounding components have not been com‑
prehensively reviewed. In this review, we discuss the involvement of DUBs in the dynamic interplay between tumors, 
immune cells, and stromal cells and illustrate how dysregulated DUBs facilitate immune evasion and promote tumor 
progression. We also summarize potential small molecules that target DUBs to alleviate immunosuppression and sup‑
press tumorigenesis. Finally, we discuss the prospects and challenges regarding the targeting of DUBs in cancer 
immunotherapeutics and several urgent problems that warrant further investigation.
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Introduction
Ubiquitination is a tightly controlled posttranslational 
modification in which ubiquitin is attached to target 
proteins, and it is reportedly involved in several bio-
logical processes, such as proliferation, differentiation, 
apoptosis, and the immune response [1]. Ubiquitination 
is mediated by a series of enzymes, including ubiquitin-
activating enzymes (E1s), ubiquitin-conjugating enzymes 
(E2s), and ubiquitin ligases (E3s) [2]. The opposing pro-
cess, deubiquitination, is reversible and involves the 
deconjugation of ubiquitin moieties from protein sub-
strates via multiple deubiquitinating enzymes (DUBs) 
[3]. Human DUBs belong to a protein superfamily that 
consists of seven subfamilies with more than 100 mem-
bers divided into two classes based on sequence simi-
larity and domain conservation: cysteine proteases and 
metalloproteases. There are six cysteine protease sub-
families, including Machado–Joseph domain-containing 
proteases (MJDs), motif interacting with Ub-containing 
novel DUBs (MINDYs), ovarian tumor proteases (OTUs), 
ubiquitin carboxy-terminal hydrolases (UCHs), ubiqui-
tin-specific proteases (USPs), and Zn-finger and UFSP 
domain proteins (ZUFSPs). JAMM/MPN domain-asso-
ciated metallopeptidases (JAMMs) are the only metallo-
proteases of this family [4, 5]. Physiologically, the balance 
between ubiquitination and deubiquitination is impor-
tant for maintaining cellular homeostasis, as it strictly 
regulates protein turnover. However, dysregulation of 
DUBs has been reported in multiple cancers and is sug-
gested to promote tumorigenesis-related processes and 
phenotypes such as angiogenesis, metastasis and thera-
peutic resistance [6–9].

The tumor microenvironment (TME) is a highly 
dynamic and complex entity comprising not only tumor 
cells but also noncancerous cells (e.g., diverse immune 
cells and cancer-associated fibroblasts (CAFs)) and acel-
lular components (e.g., the extracellular matrix (ECM)). 
Once considered bystanders, these tumor-surrounding 
components are largely involved in tumor progression 
and have recently been identified as attractive therapeu-
tic targets [10]. The emergence of immune checkpoint 
blockade (ICB) therapy has remarkably revolutionized 
cancer treatment [11]. Unfortunately, the response rate to 
ICB is unsatisfactory, particularly in solid tumors, largely 
because of the immunosuppressive nature of the TME. 
Natural killer (NK) cells and  CD8+ T lymphocytes are 
the main effector cells involved in the antitumor immune 
response [12]; however, their functions or proximity to 
the tumor compartment are often limited by infiltrating 
immunosuppressive cells, including tumor-associated 
macrophages (TAMs), myeloid-derived suppressor cells 
(MDSCs) and regulatory T cells (Tregs) [13, 14]. Their 
interplay not only facilitates cancer immune evasion but 

also decreases the efficacy of ICB. Although the role of 
CAFs in tumorigenesis is controversial due to their high 
heterogeneity [15], a large body of evidence still indicates 
that they contribute to ICB-related failure by sequester-
ing  CD8+ T cells [16–18]. Hence, exploring therapeutic 
strategies to modulate the interplay of TME components 
could improve the response to immunotherapy in the 
context of cancer treatment.

Recently, emerging evidence has demonstrated the 
involvement of DUBs in immunosuppression: they regu-
late immune checkpoints (e.g., PD-L1 and PD-1) expres-
sion or inhibit effector immune cell recruitment and 
function [19–22]. For example, macrophage-intrinsic 
ubiquitin-specific protease 1 (USP1) inhibits the recruit-
ment of  CD8+ T cells and simultaneously promotes colo-
rectal cancer (CRC) stemness and liver metastasis [19]. 
Therefore, targeting dysregulated DUBs seems promis-
ing for restoring immunosurveillance and improving 
the efficacy of ICB therapy in suppressing tumor pro-
gression. In this review, we elucidate the roles of DUBs 
in the dynamic interplay between tumors, immune cells, 
and stromal cells. We also summarize DUBs as potential 
therapeutic targets for restoring antitumor immunity and 
restraining tumorigenesis. Finally, the advantages and 
limitations of targeting DUBs for cancer immunothera-
peutics are elaborated.

The interplay between DUBs and the tumor 
microenvironment
Emerging findings have revealed that tumor- or TME 
component-intrinsic DUBs orchestrate the dynamic 
interplay within the TME, which further promotes tumor 
progression and facilitates immunosuppression [20, 
23–26]. Among these cells, NK and  CD8+ T cells are 
the main immune effector cells that exert antineoplastic 
effects [12]. In contrast, TAMs, MDSCs and Tregs are 
well-recognized immunosuppressive cells [27]. Addition-
ally, CAFs reportedly drive tumorigenesis [28]. Hence, 
in the following sections, we discuss the involvement of 
DUBs in the crosstalk between tumors and these TME 
components and summarize potential small molecules 
that target DUBs to suppress tumor progression or syner-
gize with ICB by modulating the TME.

DUBs‑mediated suppression of NK function 
and infiltration
NK cells, key effector cells of innate immunity, execute 
serial killing events on target cells through granzyme B 
(GrB), perforin and death receptor-mediated signaling 
[29]. Additionally, NK cells secrete cytokines to recruit 
or induce other immune cells to bridge innate and adap-
tive immunity [30, 31]. Death-associated protein kinase 
1 (DAPK1), a tumor-suppressive serine/threonine 
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kinase, is involved in apoptosis and autophagy [32], and 
a recent study suggested that its dysregulation causes 
NK cell exhaustion in a DUB-dependent manner [33]. 
Mechanistically, the downregulation of DAPK1 facili-
tates IKKβ-mediated COP9 signalosome 5 (CSN5) phos-
phorylation and further deubiquitinates PD-L1, which 
compromises NK cell-mediated killing effects [33]. Fur-
thermore, USP10 desensitizes pancreatic ductal adeno-
carcinoma (PDAC) cells to NK cell-mediated cytotoxicity 
by deubiquitinating yes-associated protein 1 (YAP1, a 
core component of Hippo signaling) to transcriptionally 
upregulate both PD-L1 and galectin-9 (Gal-9) [23]. Gal-9 
is an immune checkpoint that decreases NK cell activ-
ity and even promotes immune tolerance [34]. Increased 
infiltration of NK cells within the TME is a favorable 
prognostic factor in several solid tumors [35]; however, 
USP22 has been reported to suppress NK cell infiltration 
by altering the transcriptome of pancreatic cancer (PC) 
cells [36]. Overall, these findings indicate that the inhi-
bition of DUBs may facilitate NK-cell-mediated tumor 
clearance by enhancing NK-cell activity and infiltration.

The role of DUBs in TAM‑mediated immunosuppression
Macrophages are important for inflammation and are 
responsible for tissue repair and homeostasis. Mac-
rophage polarization refers to the process in which 
macrophages are driven to a specific phenotype by pro-
inflammatory stimuli within the TME. Macrophages are 
polarized into two phenotypes, M1 and M2. M1 mac-
rophages have proinflammatory, tissue-damaging and 
antitumor effects; conversely, M2 macrophages have anti-
inflammatory, tissue repair-related and protumor effects 
[37, 38]. TAMs, which are enriched within the TME, are 
estimated to account for 30 ~ 50% of infiltrating cells [39] 
and reportedly lead to tumor progression, including ther-
apeutic resistance, metastasis, and immunosuppression 
[40]. To this end, several therapeutic strategies have been 
proposed to suppress the tumor-promoting effects medi-
ated by TAMs: (1) depleting TAMs from tumor tissues, 
(2) reprogramming TAMs to the antitumor phenotype, 
and (3) blocking the recruitment of M2 macrophages. 
Depletion of TAMs could inhibit immunosuppression 
but might also significantly decrease the number of M1 
macrophages and even tissue-resident macrophages (e.g., 
microglia and Kupffer cells) [41]. Hence, among these 
strategies, modulating TAM reprogramming and infiltra-
tion to reverse immunosuppression has recently attracted 
much attention.

Accumulating evidence has revealed the involvement 
of DUBs in regulating macrophage polarization. OTU 
deubiquitinase 5 (OTUD5) and USP10 can stabilize 
YAP1 to induce M2 polarization, subsequently increasing 
the metastatic capacity of triple-negative breast cancer 

(TNBC) and PDAC cells, respectively [23, 25]. However, 
the mechanisms of M2 polarization triggered by these 
two DUBs are completely different. On the one hand, 
macrophage-intrinsic OTUD5 deubiquitinates YAP1 to 
transcriptionally upregulate M2-related cytokines, such 
as IL-10 and TGF-β, and  YAP1+ TAMs further promote 
TNBC metastasis via the CCL2/CCR2 axis [25]. Indeed, 
CCL2 not only drives tumor progression but also serves 
as an M2 recruiter and stimulator [42]. On the other 
hand, coincubation of differentiated THP-1 cells with 
USP10-knockdown PDAC cells reduced the number of 
M2 macrophages, but the underlying mechanism was not 
identified [23]. This could be explained by IL-6-mediated 
M2 polarization via dysregulation of YAP [43, 44] (Fig. 1). 
Interestingly, a recent finding revealed that USP14 
induces M2 polarization through the reprogramming of 
macrophage metabolism [45]. Notably, M1 macrophages 
depend on glycolysis, whereas M2 macrophages mainly 
rely on fatty acid oxidation (FAO) for energy demand [46, 
47]. Macrophage-intrinsic USP14 deubiquitinates and 
stabilizes sirtuin-1 (SIRT-1) to induce peroxisome pro-
liferator-activated receptor-γ coactivator 1α (PGC-1α) 
signaling and promote FAO, which results in immuno-
suppressive phenotypes (Fig.  1). Conversely, the admin-
istration of IU1 (a USP14 inhibitor) effectively suppresses 
FAO-induced M2 polarization and tumor growth in gas-
tric cancer (GC) [45] (Table 1). In addition to regulating 
TAM reprogramming, DUBs regulate the infiltration of 
M2 macrophages. Upregulation of lung cancer-intrinsic 
USP17 (also known as DUB3) induced by TAM-secreted 
inflammatory stimuli protects interferon regulatory fac-
tor 5 (IRF5), c-Rel, and NF-κB-inducing kinase (NIK) 
from TRAF2/3-mediated ubiquitin‒proteasome degrada-
tion, which not only promotes M2 macrophage recruit-
ment to the TME but also forms a positive feedback loop 
to continuously induce USP17 expression [48] (Fig.  1). 
WP-1130 was reported to decrease the enzymatic activ-
ity of USP17 and inhibit breast cancer (BC) metastasis by 
promoting Snail degradation [49], suggesting its potential 
to relieve immunosuppression in lung cancer.

Previous research revealed that TAMs facilitate 
immune escape by suppressing  CD8+ T-cell infiltra-
tion and function, which contributes to cancer pro-
gression-related phenotypes and processes, including 
chemoresistance and metastasis [14, 50], which illus-
trates the close interplay between TAMs and  CD8+ 
T cells. In line with these findings, cumulative stud-
ies have suggested that TAMs can suppress the infil-
tration and decrease the activity of  CD8+ T cells in a 
DUB-dependent manner. Within macrophages, USP1 
deubiquitinates inhibitor of differentiation 1 (ID1) 
to sequester signal transducer and activator of tran-
scription 1 (STAT1) in the cytoplasm, resulting in 
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transcriptional downregulation of  CD8+ T-cell-recruit-
ing factors (e.g., CCL4 and SerpinB2) (Fig. 1). Notably, 
ID1 is a substrate of USP1 [51], and blockade of USP1 
by ML323 (a selective inhibitor of the USP1-UAF1 
complex) not only promoted  CD8+ T-cell infiltra-
tion and function but also markedly inhibited the liver 
metastasis of CRC in an orthotopic liver metastatic 
syngeneic mouse model [19] (Table 1). USP7 is particu-
larly highly expressed in M2 macrophages, and USP7 
inhibition reprogrammed macrophages toward the 
M1-like phenotype (indicated by a significant increase 
in the M1/M2 macrophage ratio) by initiating the p38 
MAPK signaling pathway (Fig. 1). In vivo, blockade of 
USP7 by P5091 facilitated the recruitment of IFN-γ+ 
 CD8+ T cells, accompanied by PD-L1 downregula-
tion, which synergized with ICB to retard Lewis lung 
cancer growth [52] (Table  1). Remarkably, P5091 spe-
cifically targets USP7 by blocking its active site instead 

of affecting its expression [53]. As mentioned above, 
PD-L1 can be deubiquitinated by CSN5 to enhance its 
stability. TAM-mediated secretion of TNF-α activates 
IKKβ/NF-κB/CSN5 signaling to increase PD-L1 levels, 
while curcumin suppresses this effect by counteracting 
CSN5-related kinase activity [54, 55] (Fig.  1). In addi-
tion, curcumin synergizes with an anti-CTLA-4 mAb 
to potently boost  CD8+ T-cell-mediated cytotoxic-
ity in multiple syngeneic mouse models [55] (Table 1). 
Intriguingly, Lai et al. reported that USP4, which is dis-
tinct from the abovementioned DUBs, exerts tumor-
suppressive effects in the context of cancer progression 
[56]. TAM-secreted inflammatory cytokines (e.g., IL-1β 
and TNF-α) induce Snail expression in lung cancer 
cells, epigenetically downregulating USP4 to promote 
drug resistance, stemness and PD-L1 expression [56]. 
Hence, restoring USP4 levels is important for suppress-
ing cancer progression. Hypomethylating agents or 

Fig. 1 The involvement of DUBs in the crosstalk between tumors and tumor‑associated macrophages (TAMs). TAMs are enriched within the TME 
and are largely involved in tumorigenesis and immunosuppression. Within TAMs, USP7 blocks p38 MAPK‑induced M1 polarization. However, 
USP14 and OTUD5 facilitate M2 polarization by promoting SIRT‑1/PGC‑1α‑mediated FAO and deubiquitinating YAP1, respectively. USP1 enhances 
the stability of ID1, subsequently restraining STAT1 in the cytoplasm and downregulating  CD8+ T‑cell‑recruiting factors (e.g., Serpin B2 and CCL4). 
USP17 counteracts TRAF2/3‑mediated ubiquitination of IRF5, c‑Rel, and NIK and thus increase macrophage recruitment. Additionally, TAM‑derived 
TNF‑α upregulates CSN5 via IKKβ/NF‑κB to promote PD‑L1 stability and cause  CD8+ T‑cell exhaustion. Tumor‑intrinsic USP10 might drive M2 
polarization via the YAP1/IL‑6 axis. CCL4: C‑C motif chemokine ligand 4; CSN5: COP9 signalosome 5; ID1: inhibitor of differentiation 1; IRF5: interferon 
regulatory factor 5; NIK: NF‑κB‑inducing kinase; OTUD5: OTU deubiquitinase 5; PGC‑1α: peroxisome proliferator‑activated receptor‑γ coactivator 1α; 
SIRT‑1: sirtuin 1; STAT1: signal transducer and activator of transcription 1; TNFR: tumor necrosis factor receptor; TRAF2: TNF receptor associated factor 
2; TRAF3: TNF receptor associated factor 3; Ub: ubiquitin; YAP1: yes‑associated protein 1
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nanomedicine-based protein delivery agents are avail-
able therapeutic agents [57]; however, their application 
requires further investigation.

Although targeting oncogenic DUBs to suppress TAM-
elicited tumor-promoting effects has potential, several 
urgent problems warrant consideration. First, strategies 
to specifically target TAMs with dysregulated DUBs but 
not macrophages resident in normal tissues or peripheral 
circulation should be noticed [40]. Second, conventional 
binary classification of macrophages is oversimplified 
for accurate assessment of phenotypes. According to 
single-cell sequencing, TAMs may coexpress M1- and 
M2-related genes and exhibit a spectrum of phenotypes 
[58]. Whether the protein level or activity of DUBs deter-
mines the degree of macrophage polarization or TAM 
heterogeneity within the TME remains obscure and 
requires further investigation.

DUBs‑induced MDSC immunosuppressive activity 
and recruitment
MDSCs constitute a heterogeneous population of acti-
vated immune cells with immunosuppressive abilities that 
are physiologically responsible for T-cell tolerance [59, 
60]. However, infiltrating MDSCs are capable of trigger-
ing immune escape via several approaches. For instance, 
MDSCs can release immunosuppressive cytokines (e.g., 
IL-10 and TGF-β) or promote Treg infiltration, eventu-
ally suppressing  CD8+ T-cell activity [61, 62]. In addition, 
MDSC recruitment decreases the efficacy of ICB, and 
the abundance of MDSCs relative to that of infiltrating 
 CD8+ T cells determines the effectiveness of immuno-
therapies [36, 63]. These findings underscore the crucial 
role of MDSCs in immunosuppression. MDSCs are pri-
marily divided into two subsets: granulocytic MDSCs 
(G-MDSCs) and monocytic MDSCs (M-MDSCs) [64]. A 
recent study suggested that USP12 enhances the infiltra-
tion and suppressive function of M-MDSCs concomitant 
with PD-L1 upregulation through the deubiquitination 
and stabilization of NF-κB p65 [26]. In particular, high 
expression of PD-L1 on MDSCs even causes apopto-
sis of T cells [65]. Hence, targeting USP12 might reduce 
the activity of MDSCs and further restore  CD8+ T-cell 
cytotoxicity to synergize with ICB. Furthermore, Li et al. 
showed that PDAC-intrinsic USP22 changes the tran-
scriptome to enable the recruitment of MDSCs [36]. A20, 
which belongs to the OTU subfamily, is a well-charac-
terized negative regulator of NF-κB signaling and TNF-
mediated apoptosis [66]. Intriguingly, previous findings 
suggested that A20 was overexpressed in MDSCs, while 
inhibition of A20 not only reduced the infiltration of 
MDSCs but also induced MDSC apoptosis via JNK acti-
vation, potentiating immunotherapy [67]. As mentioned 
earlier, both USP10 and OTUD5 are responsible for YAP 

stabilization and activation of downstream signaling 
pathways [23, 25]. High expression of YAP was shown 
to upregulate the expression of chemokines involved in 
MDSC recruitment, including CXCL5, CXCL1/2, and 
CCL2, in  vitro and in  vivo [43, 68]. However, whether 
blockade of USP10 or OTUD5 can reactivate  CD8+ 
T-cell-mediated cytotoxicity against tumors in a MDSC-
dependent manner remains unclear and requires further 
exploration.

The role of DUBs in  CD4+ T cell differentiation
Activated  CD4+ T lymphocytes undergo lineage com-
mitment via the regulation of specific cytokines and 
corresponding transcription factors [69]. Differentiated 
 CD4+ T cells primarily consist of several subsets, includ-
ing T helper 1 (Th1), Th2, and Th17 cells and Tregs [70]. 
Recent studies have indicated that DUBs can regulate 
 CD4+ T-cell activation and even determine their differ-
entiation into specific subsets. Murine double minute 2 
(MDM2), a well-known negative modulator of p53 [71], 
can be deubiquitinated by USP15 to degrade nuclear fac-
tor of activated T cells c2 (NFATc2), which is crucial for 
T-cell-related cytokine (e.g., IL-2 and IFN-γ) expression 
(Fig. 2). Loss of USP15 promoted Th1 differentiation, but 
this phenomenon was not observed in  CD8+ T cells, as 
explained by the relatively low expression of MDM2 in 
 CD8+ T cells. Intriguingly, Usp15−/− mice challenged 
with B16 cells surprisingly exhibited increased infiltra-
tion and activation of  CD8+ T cells, which was probably 
facilitated by indirect effects of  CD4+ T cells secreting 
IFN-γ [72]. In addition to USP15, USP7 was also found 
to deubiquitinate MDM2 [73]; furthermore, a previous 
study demonstrated the physical interaction between 
USP7 and USP15 [74]. Nevertheless, whether USP7 can 
function as a USP15 to modulate Th cell differentiation 
warrants further research.

Th17 cells serve as ‘Jekyll and Hyde’ cells in tumor pro-
gression due to their strong plasticity [75, 76]. Despite 
the controversial role of Th17 cells in tumor progres-
sion, Tregs are involved mostly in self-tolerance and 
secrete immunosuppressive cytokines, including IL-10 
and TGF-β, to exert protumor effects. TGF-β secretion 
reportedly inhibits the infiltration of NK cells, mac-
rophages and DCs; moreover, increased Treg infiltra-
tion into the TME indicates a poor prognosis [77, 78]. 
An imbalance of Th17 cells and Tregs is strongly associ-
ated with cancer progression [79, 80]; strikingly, USP1 is 
reported to be a vital regulator of the differentiation of 
Th17 cells and Tregs.  CD4+ T cell-intrinsic USP1 facili-
tates Th17 differentiation rather than Treg differentiation 
through the activation of RAR-related orphan receptor-γ 
(RORγt) and proteasomal degradation of Forkhead box 
protein P3 (FoxP3) in a transcriptional coactivator with 
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PDZ-binding motif (TAZ)-dependent manner [81]. 
RORγt and FoxP3 are specific transcription factors that 
regulate Th17 cells and Tregs, respectively. Consistently, a 
previous study reported that TAZ not only acts as a criti-
cal coactivator of RORγt but also promotes FoxP3 deg-
radation by reducing its acetylation [82]. Furthermore, 
USP4 is capable of driving Th17 cell differentiation by 
catalyzing the K48-linked deubiquitination of RORγt [83] 
(Fig. 2). Lineage commitment to a specific subset simul-
taneously inhibits the gene expression of the opposing 
 CD4+ T-cell subset [69]. ML323, a selective USP1 inhibi-
tor, was suggested to exert antineoplastic effects on sev-
eral cancer types. For example, ML323 induces cell cycle 
arrest in esophageal squamous cell carcinoma [84] and 
sensitizes renal cell carcinoma (RCC) cells to apoptosis 
through death receptor 5 upregulation and survivin deg-
radation [85]. Unfortunately, immunodeficient xenograft 
mouse models were used to investigate the role of USP1 
in RCC progression [85]; hence, the effect of Th17/Treg 
imbalance on tumor progression was overlooked. Never-
theless, ML323 potently regulates the Th17/Treg imbal-
ance, demonstrating its potential for cancer treatment.

Emerging evidence has revealed that Treg-intrinsic 
DUBs can regulate the suppressive function of Tregs, 
suggesting that they are significant therapeutic targets for 
augmenting antitumor immunity. Cortez and associates 
employed the CRISPR-based loss-of-function platform 
to screen candidate proteins that regulate FoxP3 expres-
sion in mouse Tregs. The results revealed that USP22 
can promote FoxP3 deubiquitination and stabilization, 
which is counteracted by the E3 ligase ring finger pro-
tein 20 (Rnf20). As expected, USP22 deficiency dramati-
cally impaired Treg suppressive function but increased 
the proportion of IFN-γ+GrB+  CD8+ T cells and signifi-
cantly inhibited tumor growth in multiple cancer models 
[86]. Additionally, USP4 can facilitate K48-limked deu-
biquitination of interferon regulatory factor 8 (IRF8) to 
enhance the suppressive activity of Tregs [87]. IRF8 is a 
transcription factor, and its deficiency impairs the Treg-
elicited inhibitory effect on the Th1-mediated immune 
response [88]. Acetylation and dimerization of FoxP3 are 
important for Treg function [89, 90]. USP7 was shown 
to indirectly facilitate FoxP3 acetylation and dimeriza-
tion by stabilizing Tat-interactive protein 60 (Tip60, a 

Fig. 2 The roles of DUBs in modulating  CD4+ T‑cell differentiation. DUBs can regulate  CD4+ T‑cell differentiation into specific subsets. This 
not only highlights their roles in immunomodulation but also their implications in cancer immunotherapy. USP15 stabilizes MDM2 to enhance 
NFATc2 degradation, which downregulates IL‑2 and IFN‑γ and inhibits Th1 differentiation. Intriguingly, USP4 plays a dual role in  CD4+ T‑cell 
lineage commitment. On the one hand, it deubiquitinates RORγt to facilitate Th17 differentiation; on the other hand, it stabilizes IRF8 to augment 
the suppressive activities of Tregs, circumventing  CD8+ T‑cell function and infiltration. Both USP22 and USP7 induce Treg differentiation. USP22 
counteracts E3 ligase Rnf20‑mediated polyubiquitination of FoxP3; USP7 simultaneously deubiquitinate and stabilize FoxP3 and Tip60. These 
processes facilitate dimerization and acetylation of FoxP3, but are counteracted by USP1‑mediated deubiquitination of TAZ. FoxP3: Forkhead box 
protein P3; IRF8: interferon regulatory factor 8; MDM2: murine double minute 2; NFATc2: nuclear factor of activated T cells c2; Rnf20: ring finger 
protein 20; RORγt: RAR‑related orphan receptor‑γ; Tip60: Tat‑interactive protein 60
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histone acetyltransferase that mediates FoxP3 acetyla-
tion) (Fig. 2). Pharmacological inhibition or genetic dele-
tion of USP7 particularly compromises the function of 
Tregs but not that of other effector T cells, suggesting 
the selectivity of this target [91]. Although anti-CTLA4 
mAbs potently trigger antibody-dependent cytolysis of 
Tregs, there are no specific antibodies that target Tregs 
[92]. USP7 inhibitors (e.g., 564) not only have dominant 
effects on Tregs but also reportedly increase the efficacy 
of ICB and antitumor vaccines in  vivo [91] (Table  1). 
Overall, these findings indicate that blockade of USP7 
may be a potential strategy for selectively targeting Tregs 
to avoid unwanted effects on other infiltrating effector T 
cells.

The inhibitory effects of DUBs on  CD8+ T cell infiltration 
and function
CD8+ T cells are the main effector cells involved in the 
antitumor response. Mechanistically,  CD8+ T cells recog-
nize antigens presented by tumor cells and subsequently 
trigger apoptosis to eliminate target cells via the secretion 

of perforin/granzyme or the initiation of Fas-mediated 
death signals [93, 94]. However, low infiltration and 
exhaustion of  CD8+ T cells markedly reduce the dura-
bility of the ICB response [95]. The response to PD-L1/
PD-1 blockade is determined by several factors, including 
the degree of antigen presentation, the expression levels 
of immune checkpoint proteins, the infiltration of cyto-
toxic T lymphocytes (CTLs), and the activation of CTLs 
(e.g., IFN-γ signaling) [96, 97]. A recent study revealed 
that DUBs can impair antigenic presentation and further 
T cell activation, which to some degree compromises the 
efficacy of ICB therapy. Calreticulin (CRT), an eat-me sig-
nal displayed on the plasma membrane, is recognized by 
antigen-presenting cells (APCs), and then tumor-derived 
antigens are presented to prime and activate specific T 
cells [98]. A20 upregulated stanniocalcin-1 (STC-1) to 
restrain the translocation of CRT from mitochondria to 
the plasma membrane, subsequently impeding antigenic 
presentation (Fig. 3); however, A20 inhibition potentially 
enhanced the efficacy of anti-PD-1 blockade in CRC [99].

Fig. 3 The involvement of DUBs in suppressing  CD8+ T‑cell infiltration and function. USP35 inhibits STING polyubiquitination and activation, 
ultimately downregulating IRF3‑mediated type I interferon, which is important for  CD8+ T‑cell recruitment. Additionally, TAM‑intrinsic USP1 
deubiquitinates ID1 to prevent the nuclear translocation of STAT1 and the expression of  CD8+ T‑cell‑recruiting factors (e.g., Serpin B2 and CCL4). 
A20 deubiquitinates and upregulates STC‑1 to restrain the translocation of CRT from mitochondria to the plasma membrane, subsequently 
impeding antigenic presentation. With respect to  CD8+ T‑cell exhaustion, the PD‑L1/PD‑1 interaction has been extensively studied. Intriguingly, 
A20 upregulate PD‑L1 via E3 ligase rather than deubiquitinating activity. Mechanistically, it ubiquitinates prohibitin but in turn induces STAT3/PD‑L1 
signaling
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With respect to CTL recruitment, USP35 silencing 
counteracts stimulator of interferon genes (STING) 
deubiquitination, which facilitates STING-mediated 
upregulation of type I interferons and  CD8+ T-cell 
infiltration in ovarian cancer [100]. Notably, STING 

polyubiquitination is crucial for its activation, fur-
ther recruitment of TANK-binding kinase 1 (TBK1) 
and phosphorylation of interferon regulatory factor 
3 (IRF3) [101, 102] (Fig.  3). Notably, USP35 knock-
down sensitized tumors to cisplatin, and cisplatin 

Table 1 Potential small molecules that target DUBs to relieve immunosuppression and suppress tumorigenesis

BC breast cancer, CCL4 C-C motif chemokine ligand 4, CRC, colorectal cancer, CSN5 COP9 signalosome 5, EMT epithelial–mesenchymal transition, EVs extracellular 
vesicles, GC gastric cancer, ICB, immune checkpoint blockade, JAMMs JAMM/MPN domain-associated metallopeptidases, MDSCs, myeloid-derived suppressor cells; 
NSCLC non-small cell lung cancer, PGC-1α peroxisome proliferator-activated receptor-γ coactivator-1α, SIRT-1 sirtuin-1, Tregs regulatory T cells, TβRII TGF-β receptor 
II, USPs ubiquitin-specific proteases

DUB subfamily DUB Inhibitor/Compound Cell‑intrinsic DUB Mechanism / Effect / Implication Reference(s)

JAMMs CSN5 Berberine NSCLC 1. Selectively target Glu76 residue of CSN5 
to decrease PD‑L1 levels
2. Suppress MDSCs and Tregs activation 
but enhance effector T cell function and infil‑
tration

 [107]

Curcumin BC, NSCLC, Melanoma, CRC 1. Inhibit CSN5 activity to downregulate PD‑L1
2. Synergize with anti‑CTLA‑4 mAb and pro‑
mote effector T cell function

 [55]

USPs USP1 ML323 Macrophage 1. Inhibit USP1/ID1 signaling to upregulate 
 CD8+ T‑cell‑recruiting factors (e.g., CCL4 
and SerpinB2)
2. Increase  CD8+ T cell infiltration and function 
and suppress colorectal liver metastasis
3. Improve CRC sensitivity to 5‑FU and anti‑
CTLA‑4 mAb

 [19]

USP5 EOAI34 CD8+ T‑cell 1. Block USP5‑mediated deubiquitination 
of PD‑1
2. Combine with Trametinib (MEK inhibitor) 
to increase  CD8+ T cell infiltration and exhibit 
growth inhibition in lung and colon cancer

 [20]

USP7 564 Treg 1. Reduce the recruitment and suppressive 
function of  FoxP3+ Tregs
2. Improve the efficacy of antitumor vaccine 
and ICB in murine models bearing lung cancer 
or mesothelioma

 [91]

P5091 Macrophage 1. Activate p38 MAPK signaling to repro‑
gram macrophage polarization towards M1 
phenotype
2. Delay growth of lung cancer concomitant 
with increased M1 and  CD8+ T cell infiltration

 [52]

USP8 9‑Ethyloxyimino‐9 H‐
indeno[1,2‐b]pyrazine‐2,3‐
dicarbonitrile

BC 1. Decrease the stability of TβRII and circulat‑
ing TβRII+ EVs to prevent  CD8+ T cell exhaus‑
tion
2. Improve the efficacy of ICB but suppress 
metastasis

 [118]

DUBs‑IN‑2 Colon cancer and NSCLC 1. Increase PD‑L1 levels through restoring 
TRAF6‑mediated K63‑linked ubiquitination
2. Promote MHC I expression and  CD8+ T cell 
infiltration
3. Augment the tumor sensitivity to anti‑PD‑
L1/PD‑1 mAb

 [22]

PDAC 1. Decrease PD‑L1 levels through directly 
targeting USP8‑mediated deubiquitination 
of PD‑L1
2. Synergize with anti‑PD‑L1 mAb to increase 
 CD8+ T cell infiltration and function but sup‑
press liver and lung metastasis

 [21]

USP14 IU1 Macrophage 1. Block USP14/SIRT‑1/PGC‑1α axis to
metabolically reprogram TAMs
2. Inhibit EMT and tumor growth of GC

 [45]
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treatment was reported to enhance CTL infiltration 
in vivo via cGAS/STING signaling [100, 103]. As men-
tioned previously, USP1 inhibits CTL infiltration by 
deubiquitinating ID1 and suppressing the secretion of 
recruitment-related factors [19]. OTU deubiquitinase 
ubiquitin aldehyde binding 1 (OTUB1) was reported 
to govern immunocyte infiltration and is recognized as 
a poor prognostic indicator for multiple tumors of the 
digestive system [104]. This is probably because OTUB1 
can augment TGFβ signaling by preventing the ubiqui-
tination of mothers against decapentaplegic homolog 2 
and 3 (SMAD2/3) [105], which potently contributes to 
immune exclusion from tumors [18].

The exhaustion of effector T cells is primarily mediated 
by interactions between inhibitory checkpoint molecules 
and their corresponding inhibitory receptors. In particu-
lar, the PD-L1/PD-1 axis has been extensively studied. 
Cumulative studies have revealed that DUBs can facili-
tate the impairment of  CD8+ T-cell function mainly by 
directly deubiquitinating or indirectly transcriptionally 
upregulating immune checkpoints (illustrated in Fig. 3). 
Ubiquitinspecific peptidase 9, X-linked (USP9X) was 
shown to directly deubiquitinate PD-L1 in oral squa-
mous cell carcinoma [106]; moreover, CSN5 facilitates 
PD-L1 deubiquitination to enhance its stability in sev-
eral malignancies, such as BC and GC [33, 107, 108], 
suggesting that targeting CSN5 might be globally effec-
tive across multiple tumors. In addition to curcumin, 
berberine (BBR), a natural product and traditional Chi-
nese medicine, can downregulate PD-L1 in non-small 
cell lung cancer (NSCLC) to strengthen the tumor-infil-
trating T-cell-mediated immune response by reducing 
CSN5 activity [107, 109] (Table  1). Although low-dose 
BBR (< 20 µM) cannot directly eliminate NSCLC cells, 
it potently promotes the immune clearance of tumors 
[107]. Shikonin, a naphthoquinone compound, can also 
induce PD-L1 degradation by inhibiting NF-κB/CSN5 
expression in PC [110]. Zhu and associates suggested 
that OTUB1 can remove K48-linked ubiquitin chains 
of PD-L1 to prevent newly synthesized PD-L1 from 
undergoing endoplasmic reticulum-associated protein 
degradation [24]. OTUB1 ablation not only enhances 
CTL recruitment but also increases IFN-γ levels to pro-
foundly enhance antitumor immunity in  vivo [24, 111]. 
Within  CD8+ T cells, extracellular signal-regulated 
kinase (ERK) facilitates PD-1 phosphorylation at Thr234, 
which enhances its interaction with USP5 to deubiquit-
inate and increase PD-L1 levels, while USP5 inhibition 
results in elevated levels of IFN-γ and GrB. Moreover, 
combined treatment with EOAI34 (a USP5 inhibitor) 
and trametinib (a MEK inhibitor) in CT26 tumor-bearing 
mice slowed tumor growth and increased  CD8+ T-cell 
infiltration [20] (Table 1).

For the transcriptional upregulation of PD-L1, Mao 
et  al. suggested that ubiquitin C-terminal hydrolase L1 
(UCHL1) promoted PD-L1 levels by activating the Akt/
NF-κB p65 axis [112]. Strikingly, A20 was reported to 
upregulate PD-L1 via E3 ligase rather than deubiqui-
tinating activity in melanoma. Indeed, A20 possesses 
both E3 ligase and DUB functions and is referred to 
as a ubiquitin-editing enzyme. Mechanistically, A20 
facilitates the ubiquitination of prohibitin but in turn 
induces signal transducer and activator of transcription 
1 (STAT3)/PD-L1 signaling (Fig. 3); however, A20 inhibi-
tion invigorates exhausted  CD8+ T cells [113]. Positive 
regulatory domain containing 1 (PRDM1) functions as a 
double-edged sword in hepatocellular carcinoma (HCC) 
progression. PRDM1 overexpression can decrease the 
proliferative capacity of HCC cells but transcriptionally 
upregulate PD-L1 via the USP22/SPI1 axis, subsequently 
facilitating T-cell exhaustion. Mechanistically, SPI1 
serves as a transcription factor for PD-L1 and is deubiq-
uitinated by USP22 (Fig. 3). Indeed, PRDM1 overexpres-
sion failed to retard tumor growth in immunocompetent 
mice. Based on these findings, delivery of the PRDM gene 
via therapeutic vectors (e.g., adeno-associated viruses) 
has been proposed to synergize with anti-PD-1 or PD-L1 
mAbs; however, its safety and efficacy require extensive 
investigation [114].

Long non-coding RNAs (lncRNAs) and circular RNAs 
(circRNAs), previously recognized as junk RNAs, can 
serve as competitive endogenous RNAs (ceRNAs) to 
sponge miRNAs and indirectly regulate downstream 
gene expression [115]. Recent studies have shown that 
both lncRNAs and circRNAs can increase PD-L1 levels 
by sequestering specific miRNAs that negatively target 
DUBs. For instance, lncRNA GATA3-AS1 can seques-
ter miR-676-3p to promote the CSN5 level, which deu-
biquitinates PD-L1 and facilitates immunosuppression 
in TNBC [108]. Similarly, the lncRNA KCNQ1OT1 
facilitates  CD8+ T-cell exhaustion through the miR-
30a-5p/USP22/PD-L1 axis. The lncRNA KCNQ1OT1 is 
highly expressed in tumor-derived exosomes, which are 
believed to promote PD-L1 levels and immune evasion of 
neighboring CRC cells [116]. Liu et al. demonstrated that 
circIGF2BP3 upregulated PD-L1 in an OTUB1-depend-
ent manner by sponging miR-328-3p and miR-3173-5p; 
accordingly, circIGF2BP3 inhibition sensitized NSCLC to 
anti-PD-1 blockade concomitant with increased activa-
tion of CTLs in vivo [117].

Strikingly, DUB was reported to inhibit immunosur-
veillance in BC via an extracellular vesicle (EV)-depend-
ent manner [118]. Mechanistically, USP8 deubiquitinated 
and increased the level of TGF-β type II receptor (TβRII) 
in both the plasma membrane and in EVs, and circu-
lating TβRII+ EVs mediated  CD8+ T-cell exhaustion 
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(Fig. 3). After USP8 depletion, tumor-derived TβRII+ EVs 
reached nearly undetectable levels; patients with high 
USP8 expression were resistant to neoadjuvant chemo-
therapy, suggesting its potential as a biomarker. Although 
previous studies revealed that USP4 and USP8 can sta-
bilize TGF-β type I receptor (TβRI) [119, 120], targeting 
TβRII might be promising because it is relatively unsta-
ble, and its stability determines the duration of TGF-β 
signaling. Notably, selective inhibition of TβRII by target-
ing USP8 should be carefully considered because knock-
out of TβRII in BC results in enhanced metastasis and 
MDSC-elicited suppressive effects [121].

Notably, two recent studies illustrated the paradoxi-
cal role of USP8 in modulating PD-L1 levels (Fig. 3). On 
the one hand, USP8 deubiquitinates PD-L1 in PDAC, 
while combined treatment with a USP8 inhibitor and 
an anti-PD-L1 antibody enhances the infiltration of 
IFN-γ+ TNF-α+  CD8+ T cells and effectively suppresses 
liver metastasis by increasing antitumor immunogenic-
ity [21]. On the other hand, USP8 instead downregu-
lates PD-L1 in lung cancer and CRC, and USP8 blockade 
increases the efficacy of ICB [22]. Mechanistically, the 
E3 ligase tumor necrosis factor receptor-associated fac-
tor 6 (TRAF6) facilitates K63-linked polyubiquitination 
of PD-L1, whereas this effect is counteracted by USP8 
since USP8 preferentially cleaves K63-linked ubiquitin 
rather than K48-linked ubiquitin [122]. Generally, K48-
linked ubiquitination initiates proteasomal degradation, 
but K63-linked ubiquitination is recognized as a non-
degradative process [72]. USP8 inhibition by DUB-IN-2 
not only upregulated MHC I via NF-κB signaling but also 
increased PD-L1 levels by maintaining K63-linked poly-
ubiquitination to improve the sensitivity of cells to ICB 
in vivo [22] (Table 1). The contrasting outcomes could be 
explained by differences in cancer types and underlying 
mechanisms. Moreover, the antagonistic effect of USP8 
against TRAF6-mediated K63-linked polyubiquitination 
was not investigated in PDAC [21, 22]. Although tar-
geting USP8 has the potential to synergize with cancer 
immunotherapy despite the completely different results 
obtained for PD-L1 expression, the treatment window 
for combination therapy should be carefully evaluated 
because the half-life of DUB-targeted substrates might 
significantly determine the efficacy of ICB.

It is worth examining the relationship between PD-L1 
expression and ICB efficacy. Altered expression of PD-L1 
(either downregulation or upregulation) has been shown 
to improve the efficacy of immunotherapy. The former 
releases the brake on immunosurveillance; however, the 
latter turns immune “cold” tumors into immune “hot” 
tumors to increase ICB sensitivity [123]. Thus, PD-L1 
expression alone is not a reliable biomarker for predict-
ing the response to an anti-PD-L1/PD-1 mAb. Indeed, 

some patients with PD-L1 positivity exhibit no response 
to therapy, but some patients with PD-L1 negativity may 
respond [124, 125]. Hence, the significance of T-cell infil-
tration should be considered when predicting the tumor 
response to ICB. Specifically, inducible PD-L1 expression 
by infiltrating T cells indicates the presence of activated 
T cells because IFN-γ reportedly promotes PD-L1 tran-
scription. PD-L1 expression in this setting likely medi-
ates a strong response to ICB and reinvigorates T cells. 
Additionally, PD-L1-negative tumors without T-cell infil-
tration could also respond to ICB if PD-L1 expression is 
induced by a combination treatment that enhances T-cell 
infiltration [125, 126].

USP22 can deubiquitinate SPI1 to transcriptionally 
upregulate PD-L1. Moreover, USP9X, USP8, and CSN5 
can deubiquitinate PD-L1, and OTUB1 increase PD-L1 
levels by preventing new synthetic PD-L1 from enter-
ing the ERAD. Strikingly, USP8 plays a dual role in con-
trolling PD-L1 levels in distinct cancer types. In PDAC, 
USP8 directly removes K48-linked ubiquitin-bound 
PD-L1 to increase its stability. Conversely, USP8 prefer-
entially cleaves TRAF6-mediated K63-linked ubiquitina-
tion, which instead downregulates PD-L1 in CRC. Within 
 CD8+ T cells, PD-1 phosphorylation at Thr234 via ERK 
signaling facilitates its interaction with USP5 to promote 
protein stability and further promote T-cell exhaustion. 
CRT: Calreticulin; CSN5: COP9 signalosome 5; ERAD: 
endoplasmic reticulum-associated protein degradation; 
ID1: inhibitor of differentiation 1; IRF3: interferon regu-
latory factor 3; OTUB1: OTU deubiquitinase, ubiquitin 
aldehyde binding 1; STAT1: signal transducer and activa-
tor of transcription 1; STAT3: signal transducer and acti-
vator of transcription 3; STC-1: stanniocalcin-1; STING: 
stimulator of interferon genes; TBK1: TANK-binding 
kinase 1; TRAF6: tumor necrosis factor receptor-associ-
ated factor 6.

CAFs‑mediated suppression of  CD8+ T cell function 
in a DUB‑dependent manner
CAFs are located in the stroma and are involved in several 
cancer-related processes, including invasion, angiogen-
esis, metastasis, chemoresistance and immunosuppres-
sion [127–129]. CAFs facilitate immune escape not only 
by forming a physical barrier but also by releasing various 
cytokines and chemokines to inhibit the recruitment and 
activity of effector immune cells [28]. For instance, CAF-
derived C-X-C motif chemokine ligand 12 (CXCL12) 
sequesters  CD8+ T cells, which reduces  CD8+ T-cell 
infiltration in the juxtatumoral compartment (identi-
fied as < 100  μm from the tumor) [17, 130]. A recent 
study suggested that CAF-derived CXCL12 promoted 
PD-L1 expression in bladder cancer. Mechanistically, the 
CXCL12/CXCR4 axis upregulates DUB cylindromatosis 
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(CYLD) via JAK2/STAT3 signaling to facilitate p62 deu-
biquitination and accumulation, which suppresses the 
autophagic degradation of PD-L1 [131]. Consistent 
with the findings of previous studies, the inhibition of 
autophagic flux in turn promoted PD-L1 expression in 
GC [132]. However, CYLD was also reported to serve as 
a tumor-suppressive DUB by negatively modulating the 
oncogenic activation of NF-κB [133], revealing its dual 
role in tumor progression.

Discussion
The emergence of ICB has revolutionized cancer thera-
peutics and brought benefits for patients with hemato-
logical malignancies in recent years [11]. Unfortunately, 
the response rate to ICB is approximately 20% in patients 
with solid tumors [134], which is to some extent influ-
enced by the heterogeneity of the TME [135]. Ubiq-
uitination and deubiquitination are tightly regulated 
posttranslational modifications that maintain cellular 
homeostasis. Accumulating evidence has demonstrated 
the dysregulation of DUBs in cancer development and 
their involvement in modulating the TME for immuno-
suppression [21, 26, 36, 48]. Hence, a better understand-
ing of the role of DUBs in the interplay between tumors 
and TME components is promising for cancer immu-
notherapy. In the following context, we elucidate the 
prospects and challenges of targeting DUBs in cancer 
immunotherapy.

With respect to prospects, first, the enzymes involved 
in the ubiquitination cascade have clinical implications 
in cancer [136]. However, DUBs seem to be better thera-
peutic targets than E3 ligases because the former possess 
conserved catalytic cysteines, while the latter lack iden-
tified catalytic residues [137]. Second, targeting DUBs 
might be feasible and have the potential to eliminate 
undruggable oncoproteins since their cellular homeo-
stasis is strictly regulated by the ubiquitin‒proteasome 
system. For instance, YAP1 was reported to upregu-
late PD-L1 and even promote M2 polarization to drive 
immune evasion [23]. Unfortunately, targeting YAP1 is 
technically challenging due to the lack of known cata-
lytic activity [138]. USP10 can deubiquitinate and stabi-
lize YAP1, and its inhibitor Wu-5 was found to potently 
suppress leukemia [139, 140], exhibiting its potential for 
eliminating undruggable oncoproteins to restore immu-
nosurveillance. Third, DUB inhibitors may be used as 
adjuvants with clinically prescribed treatments (e.g., 
chemotherapy and ICB) [36]. This not only reduces the 
dosage requirement of single agents but also decreases 
the probability of acquired resistance. Indeed, blockade 
of USP8 by DUBs-IN-2 synergizes with ICB to retard 
tumor growth [22]. As demonstrated previously, cur-
cumin and BBR are suggested to function as ICB agents 

by inhibiting the CSN5/PD-L1 axis [55, 107]. Notably, 
compared to therapeutic antibodies, small-molecule 
inhibitors that target DUBs to regulate immune check-
points might possess several advantages, including 
greater tissue penetration, a safer profile after oral admin-
istration, and favorable pharmacokinetics [141]. Notably, 
several DUB inhibitors are now potent and selective (e.g., 
FT671, a USP7 inhibitor with nanomolar potency) [142], 
and some of them are even being tested in clinical trials, 
which highlights their potential to synergize with ICB to 
augment antitumor immunity. For example, the Mission 
Therapeutics-developing USP30 inhibitor MTX652 has 
demonstrated a favorable pharmacokinetic profile dur-
ing the phase I clinical trial. Furthermore, KSQ-4279, a 
USP1 inhibitor, in combination with a PARP inhibitor 
(e.g., olaparib) is in a phase I clinical trial to evaluate its 
safety and clinical activity in patients with advanced solid 
tumors (NCT05240898). Whether KSQ-4279 can act 
as an ML323 to synergize with an anti-CTLA-4 mAb to 
suppress CRC progression by inhibiting the USP1/ID1 
axis requires investigation.

Although the abovementioned advantages highlight 
that DUB inhibitors are potential cancer therapeutics, 
several challenges and unsolved problems warrant atten-
tion and intensive research.

(i) Deubiquitination is an intracellular biological pro-
cess; thus, unlike small-molecule compounds, 
therapeutic antibodies cannot bind DUBs [143]. 
Notably, a recent study demonstrated that dimeric 
IgA can effectively target intracellular oncoproteins 
to suppress tumor growth through the polymeric 
immunoglobulin receptor, which might be a solu-
tion for this obstacle [144].

(ii) Numerous DUBs can regulate identical targets (e.g., 
PD-L1); vice versa, the substrates of a specific DUB 
are not fully known. Hence, most first-generation 
DUB inhibitors are multitargeted, which likely 
affects nontarget pathways and causes toxicity. The 
USP14/ubiquitin C-terminal hydrolase L5 (UCHL5) 
inhibitor VLX1570 was reported to inhibit multiple 
myeloma (MM) progression in  vivo [145]; unfor-
tunately, a phase I/II clinical trial (NCT02372240) 
evaluating the safety and efficacy of VLX1570 and 
dexamethasone in patients with refractory MM was 
terminated due to intolerable toxicity [146]. Thus, 
the toxicity and pharmacokinetics of DUB inhibi-
tors in vivo should be carefully considered despite 
the differential expression of DUB in tumors.

(iii) DUBs seemingly regulate distant molecular mecha-
nisms in different malignancies or cell types. One 
salient example is USP8, which upregulates PD-L1 
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in PDAC via direct deubiquitination [21] but down-
regulates PD-L1 in CRC through counteracting 
TRAF6-mediated K63-linked polyubiquitination 
[22]. USP4 can serve as a double-edged sword in 
tumor progression because it functions as a tumor 
suppressor in lung cancer by indirectly circumvent-
ing stemness [56], while USP4 promotes TNBC 
metastasis by enhancing TGF-β signaling and 
inducing the suppressive activity of Tregs [87, 119]. 
Notably, most studies have focused on the onco-
genic roles of DUBs rather than their tumor-sup-
pressive activities. In addition, the therapeutic dose 
of and cellular sensitivity to DUB inhibitors are 
also major concerns. USP7 inhibition by P5091 can 
drive macrophage reprogramming, while reduced 
Treg suppressive function was not observed under 
USP7 blockade [52, 91]. It is speculated that the 
difference in sensitivity to a given DUB inhibitor 
between macrophages and Tregs might be a con-
tributing factor.

(iv) Most DUBs possess similar catalytic pockets, 
and the conformations of their active sites change 
dynamically upon interaction with the ubiquitin 
moiety. Furthermore, the mechanisms regulat-
ing DUB enzymatic activity are complicated and 
involve substrate-mediated catalysis and allosteric 
regulation [147]. Notably, some DUBs preferen-
tially target protein substrates harboring specific 
ubiquitin modifications, and diverse ubiquitin link-
ages (e.g., branched or mixed heterotypic ubiquitin 
chains and ubiquitin-like modifiers) might confer 
complexity to these client proteins [148]. For these 
reasons, highly selective targeting of DUBs is intrac-
table. Nevertheless, Turnbull and colleagues iden-
tified FT671, a noncovalent USP7 inhibitor with 
nanomolar potency, which exhibits specificity and 
high affinity because it targets the dynamic pocket 
adjacent to the catalytic center and is distinguished 
from other DUB inhibitors [142].

(v) Activity-based probes (ABP) and fluorogenic sub-
strates are commonly used tools for detecting DUB 
activity and screening DUB inhibitors. For example, 
Ub-AMC (7-amido-4-methylcoumarin) is used to 
measure the hydrolysis of ubiquitin linkages in the 
presence of DUB inhibitors [149]; however, fluo-
rescence interference by small molecules has been 
reported. DUBs remove ubiquitin moieties via reac-
tive thiol groups, which might lead to false-positive 
results since most inhibitor screening assays involve 
alkylating or nonspecific redox agents [74]. Moreo-
ver, high-throughput biochemical assays are gener-
ally limited by the low-hit rate and mere assessment 
of catalytic sites. The introduction and drawbacks of 

emerging screening technologies were elaborately 
discussed in a previous review [143]. Recently, 
Chan and associates took advantage of a structure-
guided approach to accelerate the development of 
DUB inhibitors. Paired with activity-based protein 
profiling, the authors tailored the DUB-focused 
covalent library chemically diversified to target 
multiple discrete regions near the catalytic site and 
eventually identified selective inhibitors against the 
endogenous DUBs and a probe for the less-investi-
gated DUB VCPIP1 with nanomolar potency [150]. 
Overall, obtaining an in-depth understanding of the 
biology of DUBs and optimizing screening tech-
nologies are important for the discovery of effective 
DUB inhibitors.

Conclusion
Deubiquitination is an important posttranslational 
modification that strictly regulates cellular protein turn-
over. Emerging studies have indicated that dysregula-
tion of DUBs can not only promote tumorigenesis but 
also participate in cellular interplay within the TME to 
facilitate immune escape, which makes DUBs promis-
ing therapeutic targets. In this review, we first compre-
hensively illustrated the roles of DUBs in the dynamic 
crosstalk between tumors, immune cells, and stromal 
cells. In addition, we discussed numerous DUB inhibi-
tors that potently reverse immunosuppression. Finally, 
both the advantages and urgent problems associated 
with targeting DUBs for cancer treatment are discussed. 
In conclusion, an in-depth understanding of the biologi-
cal characteristics of DUBs and the exploration of effi-
cient DUB inhibitors by optimizing the present screening 
assays will be conducive for the development of DUB-
targeting drugs.
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