
R E V I E W Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Ma et al. Cell Communication and Signaling          (2024) 22:262 
https://doi.org/10.1186/s12964-024-01641-7

medications inevitably carry the risk of serious immedi-
ate or delayed adverse reactions, such as life-threatening 
infections and cancer [1]. Addressing the root cause of 
autoimmunity, specifically the loss of tolerance to auto-
antigens, or preventing the induction or manifestation 
of undesirable immune responses in transplantation and 
allergy, represents a crucial progression in steering clear 
of general immunosuppression. Recent basic research 
findings have suggested that cell-based immunotherapy 
could offer a more effective and targeted approach to 
induce and establish long-term tolerance. The majority 
of ongoing research is centered around generating and 
therapeutically applying dendritic cells (DCs), aiming to 
restore tolerance in autoimmune diseases and prevent 
transplant rejection [2, 3]. Consider their significant 
role in maintaining peripheral tolerance in both mice 
and humans. Thus far, clinical trials have extensively 
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The current standard treatment approach for transplant 
rejection and autoimmune diseases involves non-specific 
immunosuppressive medications. Despite the emer-
gence of advanced antibody-based biologics as potential 
treatment options, the majority of rejection and autoim-
mune diseases still remain incurable. Furthermore, these 
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Abstract
Gene editing of living cells has become a crucial tool in medical research, enabling scientists to address 
fundamental biological questions and develop novel strategies for disease treatment. This technology has 
particularly revolutionized adoptive transfer cell therapy products, leading to significant advancements in tumor 
treatment and offering promising outcomes in managing transplant rejection, autoimmune disorders, and 
inflammatory diseases. While recent clinical trials have demonstrated the safety of tolerogenic dendritic cell (TolDC) 
immunotherapy, concerns remain regarding its effectiveness. This review aims to discuss the application of gene 
editing techniques to enhance the tolerance function of dendritic cells (DCs), with a particular focus on preclinical 
strategies that are currently being investigated to optimize the tolerogenic phenotype and function of DCs. We 
explore potential approaches for in vitro generation of TolDCs and provide an overview of emerging strategies 
for modifying DCs. Additionally, we highlight the primary challenges hindering the clinical adoption of TolDC 
therapeutics and propose future research directions in this field.

Keywords  Tolerogenic dendritic cells, Gene editing, Autoimmune disease, Organ transplantation

Emerging strategies for treating autoimmune 
disease with genetically modified dendritic 
cells
Yunhan Ma1, Ruobing Shi1, Fujun Li2 and Haocai Chang3,4*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12964-024-01641-7&domain=pdf&date_stamp=2024-5-6


Page 2 of 15Ma et al. Cell Communication and Signaling          (2024) 22:262 

investigated the safety, feasibility, and effectiveness of 
diverse tolerogenic DCs (TolDCs) in treating patients, 
showing no associated side effects and good tolerabil-
ity [3, 4]. However, further approaches may be required 
to enhance the efficacy and specificity of TolDCs. This 
review explores the impact of gene modifications on the 
application of DC therapy (Fig. 1). We underline the reg-
ulatory mechanisms of targeted gene, and their potential 
use to improve the efficacy and patient survival in cell-
based therapies, ultimately aiming to induce tolerance.

The path to tolerogenesis in DCs
Generation and characteristics of TolDCs
DCs with stable, semi-mature phenotypes and tolerant 
properties are often referred to as TolDCs, which play a 
critical role in preventing immune rejection and inflam-
mation. In vitro, TolDCs are typically generated from 
human blood monocytes (CD14+) and rodent bone mar-
row precursors, or nonhuman primates CD34+ cells. 
The differentiation of these cells into immature DCs 
(iDCs) is facilitated by granulocyte-macrophage colony-
stimulating factor (GM-CSF). Typically, cytokines (such 

as IL-10, TGF-β), and immunosuppressive drugs (such 
as dexamethasone, rapamycin, mycophenolic acid and 
vitamin D3) are added during the culture to enhance 
TolDCs tolerance [5]. TolDCs exhibit certain charac-
teristics at the end of the culture period to be identified 
as such: (i) reduced or absent expression of cell surface 
markers, including major histocompatibility complex II 
(MHC-II), co-stimulatory molecules (CD80 and CD86), 
activation markers (CD40); (ii) resistance to maturation 
stimulation, as tested using pathogen and/or inflamma-
tory signals, lipopolysaccharide (LPS), CD40 ligand, DC 
maturation cocktail, and TNF-α; (iii) minimal potential 
to induce allogeneic T cell proliferation upon stimula-
tion, along with the ability to produce IL-10 and support 
the proliferation of regulatory T cells (Tregs) [6].

Transcriptional determinants
In inflammatory environments, such as those found in 
the example, IFN-γ interacts with its receptor to activate 
the transcription factor signal transducer and activator 
of transcription 1 (Stat1). This activation facilitates the 
rapid development of iDCs into a fully functional mature 

Fig. 1  Recent strategies to modification of DCs to promote tolerogenic phenotype and function
(a) Inhibiting the expression of MHC-II is associated with the downregulation of antigen peptide presentation and the recognition of T cells. (b) Decreas-
ing the expression of co-stimulatory molecules, TNFSF, TLRs and their adaptors is associated with DC tolerogenic function. (c) Inducing the expression of 
FasL, PD-L1 and β-catenin promotes T cells apoptosis. (d) Overexpression of IL-10 and IL-27 in DCs exhibits a higher suppressive capacity. (e) Promoting 
the expression of CCR7 and BTLA imparts tolerogenic properties and aids in the maintenance of peripheral tolerance. (f) Upregulation of IDo and down-
regulation NCoR1 expression in DCs contribute to the polarization of Th cells into Tregs
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phenotype [7]. Conversely, inhibition of IFN-γ receptor 
through gene editing techniques suppresses DC matu-
ration [8]. While iDCs are typically associated with tol-
erance and mature DCs (mDCs) with an immunogenic 
phenotype, the relationship between maturation and the 
acquisition of an immunogenic phenotype is not always 
evident. In fact, studies have reported that in mice, iDCs 
can undergo stable maturation in vivo, leading to mDCs 
with tolerance characteristics [9]. Some studies have sug-
gested that DCs can also develop with tolerogenic or 
immunogenic phenotypes even after they have matured 
[9].

The Wnt-β-catenin signaling pathway is crucial for 
immune homeostasis and tolerance in DCs [10]. Specifi-
cally, β-catenin expressed in DCs is essential for induc-
ing Tregs and producing anti-inflammatory cytokines 
[11]. Mechanistically, β-catenin translocates from the 
cytoplasm to the nucleus and collaborates with mem-
bers of the T cell factor/lymphoid enhancer factor fam-
ily to regulate the transcription of tolerogenic genes [12]. 
While NF-κB signaling is necessary for the differentiation 
of immunogenic DCs, emerging research suggests that 
downstream transcription factors of NF-κB play a role in 
the regulation of immune homeostasis and tolerance in 
DCs [13]. Based on these findings, it can be inferred that 
transcription factors are crucial factors in determining 
the immunogenicity or tolerogenicity of DCs. Nonethe-
less, the specific processes that govern the differentia-
tion of distinct DC subpopulations from their progenitor 
cells, as well as the underlying mechanisms driving the 
tolerogenic or immunogenic response, remain to be fully 
elucidated.

Transcription factors collaborate with epigenetic 
enzymes to target specific genomic regions, leading to 
epigenetic modifications. It is widely acknowledged that 
epigenetic marks can directly impact or influence the 
phenotype and function of cells. Multiple studies have 
demonstrated the involvement of various epigenetic 
mechanisms in the development of tolerance in DCs. 
For instance, prostaglandin E2 induces the upregula-
tion of DNA methyltransferase DNMT3A, facilitating 
the hypermethylation and silencing of immunogenic 
genes. As a result, it promotes the tolerogenic function 
of human DCs to inhibit CD8+ T cell proliferation and 
IFN-γ production [14]. Specific protein palmitoylation 
is another process linked to the acquisition of tolerance 
in DCs. The zDHHC family of S-acylation enzymes, 
exemplified by zDHHC2, mediates endothelial dysfunc-
tion in the systemic inflammatory response syndrome 
[15]. zDHHC2 specifically regulates substrate protein 
and membrane binding, as well as cross-talk with phos-
phorylation [16]. Deficiency of zDHHC2 in human plas-
macytoid DCs (pDCs) cellular model has been found 
to augment immune tolerance by inhibiting IFN-α 

production [17]. While the research on the potential 
contribution of histone modifications and DNA meth-
ylation to the acquisition of tolerance in DCs is limited, 
various studies provide support for the relevance of epi-
genetic modifications in this context. As an illustration, 
the in vitro differentiation of human monocytes into DCs 
is accompanied by Stat6-mediated acquisition of DNA 
methylation changes. These changes are crucial for estab-
lishing the distinct phenotype of DCs [18]. This finding 
confirms the role of DNA methylation in maintaining the 
stability of tolerogenic phenotypes.

Metabolic determinants
In general, DCs have the capacity to induce self-immune 
tolerance through autocrine TGF-β signaling [19]. TGF-β 
induces the expression of indoleamine 2,3-dioxygen-
ase (IDo), an enzyme that participates in the catabolism 
of tryptophan and serves an immunosuppressive func-
tion in DCs [20]. Furthermore, Smad7 acts as a potent 
negative regulator of TGF-β signaling by preventing the 
binding of Smad2/3 to the TGF-β receptor II, which is 
essential for transducing TGF-β signaling [21]. Smad7−/− 
DCs exhibit elevated levels of IDo expression. Mice 
devoid of Smad7 specifically in DCs are resistant to the 
development of encephalomyelitis (EAE). This resistance 
is attributed to an enhanced presence of Tregs in the cen-
tral nervous system and a diminished number of effector 
T cells in the brain [22].

Nuclear receptor corepressor 1 (NCoR1) is considered 
to play a crucial role in maintaining homeostasis and 
regulating metabolism in the body [23]. Recent research 
has indicated that the deficiency of NCoR1 induces a 
robust tolerogenic response in DCs. In a model of para-
sitic infection, the adoptive transfer of NCoR1-deficient 
DCs leads to the polarization of T helper (Th) cells into 
Tregs in vivo, resulting in an augmentation of the dis-
ease phenotype [24]. Mechanistically, NCoR1 deficiency 
drives Akt-mTOR-HIF-1α axis-mediated glycolysis and 
CPT1A-driven beta-oxidation [25]. Thioredoxin-binding 
protein-2 (TBP-2) plays a key regulator role in maintain-
ing cellular redox balance. The TBP-2−/− DCs exhibited 
comparable levels of MHC-II and co-stimulatory mol-
ecules upon LPS stimulation compared to wild-type DCs. 
However, there was a reduction in the production of IL-
12p40, IL-12p70, and IL-6 [26].

Crosstalk with other immune cells
An important characteristic of DCs and natural killer 
(NK) cells is their ability to regulate each other through 
intercellular contact, leading to Th1 polarization and the 
secretion of cytokines [27]. NK cells induced DCs matu-
ration and secretion of IL-12p70 [28]. Conversely, mDCs 
exert cytotoxic functions by activating NK cells. Galec-
tin-3 (Gal-3), an endogenous lectin, has been found to 
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have both promoting and anti-inflammatory effects in 
various disease conditions. It has been reported that the 
deletion of Gal-3 in DCs inhibits NK cells from produc-
ing pro-inflammatory cytokines [29]. However, some 
studies suggest that effective interaction between DCs 
and NK cells can only occur through direct cell-cell con-
tact [30], which is facilitated by interactions between 
tumor necrosis factor superfamily (TNFSF) ligands and 
their homologous receptors. For example, the binding of 
the transmembrane protein tmTNF expressed by DCs 
and tmTNFR2 expressed by NK cells induces the secre-
tion of IL-12p70 by DCs and TNF-γ by NK cells [31]. 
This implies that secreted pro-inflammatory cytokines 
may be involved in the subsequent cell contact.

TolDCs have the ability to promote peripheral toler-
ance by facilitating the differentiation of Tregs. In asthma 
models, the Tregs induced by TolDCs displayed greater 
regulatory activity compared to natural Tregs with the 
same T-cell receptor (TCR) specificity [32]. During 
homeostasis, DCs also present self-antigens or harm-
less antigens, thus promoting the differentiation of Tregs 
[33]. Interestingly, these DCs exhibit a mature pheno-
type characterized by high expression levels of MHC-II 
and co-stimulatory molecules, yet they do not induce an 
immune response [34].

Co-stimulatory signals, such as CD80/CD86-CD28 
[35] and CD40-CD154 [36] between DCs and T cells 
contribute to the production of Tregs. Mice devoid of 
CD80 or CD86 specifically in DCs showed a decrease in 
the number of peripheral Tregs without over-activation 
of T cells [34]. DCs expressing the transcription factor 
IRF4 have been found to exhibit a mature phenotype dur-
ing homeostasis and promote the production of Tregs by 
enhancing the expression of genes required for antigen 
presentation and T-cell tolerance, such as retinaldehyde 
dehydrogenase and PD-L2 [37]. Conversely, a decrease in 
the expression of IRF4 promotes the response of DCs to 
oxidative stress and inflammatory cytokines [38]. Lastly, 
TolDCs have the ability to directly eliminate T cells 
through clonal clearance. For instance, DCs express the 
TNF-related apoptosis-inducing ligand (TRAIL), which 
interacts with death receptors in T cells, thereby promot-
ing T cell apoptosis by activating the caspase pathway 
[39].

However, the treatment of TolDCs in autoimmunity 
and transplant rejection faces two major problems: The 
first problem is the inflammatory environment within 
the body. In such an in vivo inflammatory environment, 
TolDCs are prone to developing into mDCs and even 
immunogenic DCs due to their instability. To overcome 
this challenge, semi-mature TolDCs, which exhibit a 
more stable phenotype and are less prone to differen-
tiation, have shown the ability to prolong graft survival, 
particularly under inflammatory stimulation compared 

to classical TolDCs. Common approaches for their gen-
eration include treatment with drug cocktails or immu-
nomodulatory cytokines and exposure to apoptotic cells 
[40]. Another problem to consider is the adjunctive use of 
immunosuppressants. Clinical studies have consistently 
shown that adoptive transfer therapy using TolDCs still 
requires the synergistic effects of immunosuppressants. 
In vitro experiments conducted on mouse and human 
DCs have demonstrated that immunosuppressant-
treated DCs exhibit enhanced tolerance functions. For 
example, rapamycin treatment assists TolDCs in inducing 
increased expression of immunoglobulin-like transcript 3 
and 4 (ILT3 and 4), thereby contributing to the effective 
prolongation of graft survival. Conversely, cyclosporine-
treated DCs have exhibited impaired migratory func-
tion [41]. Nonetheless, it is important to note that these 
strategies do not completely eliminate the generation of 
immunogenic DCs. Therefore, further improvement in 
the tolerance characteristics and stability of DCs can be 
achieved by modifying the DC genome.

Inhibiting the expression of MHC-II
TolDCs express low level of MHC-II, which is essential 
for the presentation of antigen peptides for recognition 
by T cells. Consequently, suppressing the expression of 
MHC-II in DCs through gene editing techniques exhib-
its several TolDC-like characteristics, including immu-
nosuppressive ability and the ability to maintain a stable 
phenotype even under inflammatory conditions in vivo 
[42].

Sequence comparisons of human and mouse MHC-
II genes have revealed the presence of short cis-acting 
sequences upstream of their transcription start sites, 
named W/S/Z, X1, X2, and Y box (SXY modules). The 
RFX, NF-Y and cAMP response element binding protein 
(CREB) are synergically bound to the SXY modules to 
form a stable nucleoprotein complex called the MHC-II 
booster, in which the RFX complex is a key component 
in the assembly of the element [43]. Enhancer forma-
tion and the recruitment of the non-DNA-binding tran-
scription factor-MHC-II transactivator (CIITA) to the 
enhancer are necessary for MHC-II transcription [44] 
(Fig.  2). CIITA plays a crucial role in recruiting histone 
acetyltransferases such as CBP/p300, PCAF, and GCN5 
to the MHC-II promoter, leading to the activation of 
acetylation markers [45]. Importantly, CIITA itself pos-
sesses histone acetyltransferase activity [46]. Interest-
ingly, histone hyperacetylation not only inhibits the 
recruitment of histone deacetylase-induced enhancer 
components but also induces MHC-II expression in the 
absence of CIITA [47]. These findings suggest that his-
tone acetylation serves multiple functions on the MHC-II 
promoter, modifying CIITA and chromatin structure to 
promote more efficient transcription initiation [48].
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Downstream signaling intermediates play a vital role 
in regulating the expression of key transcription factors 
necessary for DC differentiation. Deletion of transcrip-
tion factors such as IRF8, IRF4, or PU.1 leads to the loss 
of specific DC subpopulations and results in reduced 
MHC-II expression on bone marrow-derived DCs 
(BMDCs) in response to GM-CSF stimulation [49]. In 
addition, the Src-like adaptor protein (SLAP) functions 
as a negative regulator of the GM-CSF receptor. How-
ever, SLAP/SLAP2−/− BMDCs exhibit decreased levels 
of MHC-II expression. This suggests that the mechanism 
behind this phenomenon may be linked to the excessive 
activity of the GM-CSF signaling pathway, which ulti-
mately impacts MHC-II transcription [50].

The increased expression of MHC-II on the surface 
of DCs is attributed to a reduction in the ubiquitination 
level of lysine residues located in the cytoplasmic tail of 
the MHC-II-β chain. This results in a decreased rate of 
endocytosis and degradation of MHC-II. The process 
is tightly regulated by the E3 ubiquitin ligase known as 
membrane-associated ring-CH-type finger 1 (March1). 
Deletion of March1 or the mutation of the β-tail lysine 
residue (K225R-DCs) in MHC-II leads to a decline in 

MHC-II ubiquitination within the cytoplasmic recy-
cling pathway. Subsequently, this decrease contributes 
to an enhanced expression of MHC-II on the surface of 
DCs. Although the phagocytosis of antigens by K225R-
DCs increases, their ability to present antigens to T 
cells is diminished. Additionally, single-cell sequencing 
analysis confirmed that genes related to K225R-DCs are 
highly expressed, specifically in down-regulated cellu-
lar activation pathways [51]. Ubiquitination also plays a 
role in regulating MHC-II transcription levels. Another 
E3 ubiquitin ligase, HMG-CoA reductase degradation 
protein (Hrd1), promotes the degradation of B lympho-
cyte-induced maturation protein-1 in DCs through ubiq-
uitination, thereby enhancing MHC-II transcription. 
Hrd1−/− BMDCs exhibit decreased expression of MHC-
II, which is associated with a delay in the onset of EAE in 
DC-specific Hrd1−/− mice [52].

Immunomodulatory ligands and receptors involved in 
TolDCs
The B7 family
The B7 family of co-stimulatory molecules is known 
to play a pivotal role in T cell activation. Among these, 

Fig. 2  Model for MHC-II trafficking
 TLRs stimulate immunogenic DC development by inducing MHC-II synthesis via activation of the NF-κB and PI3K signaling pathway. The recruitment of 
the CIITA to the enhancer is necessary for MHC-II transcription, CIITA interacts with various members of the RFX, CREB and NF-Y complexes to positively 
regulate MHC-II gene transcription. CIITA recruits CBP/p300, PCAF, and GCN5 to the promoter, enhancing MHC-II transcriptional activity. Newly synthe-
sized MHC-II proteins are transported via the Golgi to the endosome. Here, antigen peptide is loaded onto MHC-II, then antigen loaded-MHC-II traffic 
to the plasma membrane via transport vesicles for antigen presentation. In resting DCs, MHC-II ubiquitination enhances the kinetics of degradation of 
peptide-bound MHC-II molecules and prevents recycling of internalized molecules back to the cytoplasm. Additionally, March family has been shown to 
be involved in MHC-II ubiquitination
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B7-1 (CD80), B7-2 (CD86), B7-H2 (ICOSL), and B7-H7 
(HHLA2) provide activation signals to T cells, while 
B7-DC (PD-L2), B7-H1 (PD-L1), B7-H3 (CD276), B7-H4 
(B7S1/B7x/Vtcn1), B7-H5 (VISTA/GI24/Dies/PD-1  H), 
and BTNL2 inhibit T cell activation (Table  1). Several 

immunotolerance strategies for inducing TolDCs, includ-
ing deletion of CD80 [53], CD86 [54] or ICOSL [55], and 
overexpression of PD-L1 [56] have been shown to be 
effective in inducing transplantation tolerance and inhib-
iting autoimmune diseases. Machen et al. engineered an 

Table 1  Members of B7 family
Ligand Express on im-

mune cells
Receptor Function Signaling pathway 

on T cells
Related autoimmune disease

B7-1 (CD80)
B7-2 (CD86)

DCs, Langerhans’ 
cells, activated 
macrophages 
and B cells.

CD28
PD-L1

Inducing the activation and 
proliferation of naive T cells 
and IL-2 production.

Activating PI3K-Akt, 
JNK, ERK, signal-
ing pathways and 
inducing NF-κB, 
NFAT, mTOR, GLUT1 
[104].

Belatacept and abatacept, high af-
finity CTLA4-Ig that blocks CD28-
CD80/CD86 interactions, have 
been approved for the prevention 
of rheumatoid arthritis [105] and 
acute rejection in adult kidney 
transplantation [106].CTLA-4 Inhibiting T cell responses, 

IL-2 production and Th2/
Th17 differentiation.
Inducing Tregs generation.

Inhibiting cell cycle 
and NFAT nuclear 
translocation.
Inducing GIT2-αPIX-
PAK- PKC-η axis 
[107].

B7-DC (PD-L2)
B7-H1 (PD-L1)

DCs, monocytes, 
macrophages, 
B cells and acti-
vated T cells.

PD-1 Inhibiting T cell prolifera-
tion and cytokines (IL-10, 
IFN-γ) production.
Inducing Tregs generation.

Inhibiting the 
PI3K-Akt, MEK-ERK 
signaling pathways 
and cell cycle.
Inducing CTLs 
apoptosis.

The PD-L1 inhibitor atilizumab 
and dvizumab have been ap-
proved for the prevention of 
acute rejection in liver transplan-
tation [108].

B7-H2 (ICOSL) DCs, B cells and 
macrophages.

ICOS Inducing the activation and 
proliferation of T cells, T cell-
dependent B cell activation, 
Th2 differentiation and IL-4 
production.

Activating PI3K-Akt 
signaling pathway.

ICOS-ICOSL blocking agents 
lack efficacy in prolong kidney 
allograft survival in a NHP model 
[109].

B7-H3 (CD276) T cells, 
CD11c+ DCs, 
NK cells and 
macrophages.

Unidentified Predominantly inhibiting 
T cell proliferation and Th1 
response.

Inhibiting NFAT, 
NF-κB and AP-1 ex-
pression [110].

B7-H3 antibody results in earlier 
onset and worse disease in mouse 
encephalomyelitis model [111].
B7-H3 expression negatively 
regulates acute graft-versus-host 
disease in mice [112].

B7-H4 (B7S1/B7x/Vtcn1) CD11c+ DCs, 
BMDCs, peritone-
al macrophages 
and splenic B 
cells.

Unidentified Inhibiting T cells prolif-
eration and cytokines 
production.
Promotes Tregs 
development.

Arresting cell cycle 
[113].

B7-H4 mAb enhances mouse 
encephalomyelitis severity [114].
Treatment of NOD mice with B7-
H4-Ig ameliorates the incidence of 
diabetes [115].
B7-H4 promotes the viability of 
islet grafts [116].

B7-H5 (VISTA/GI24/Dies/
PD-1 H)

Macrophages, 
mature BMDCs, 
neutrophils and 
CD11c+ DCs, and 
to a less extent 
on T cells and 
activated Tregs.

Unidentified Inhibiting T cells prolif-
eration and cytokines 
production.
Supporting Tregs survival.

Arresting cell cycle 
[117].
Inhibiting SLP76, 
PLC-γ1, Akt, and 
ERK1/2 expression 
[118].

B7-H5 agonist alleviates autoim-
mune lupus.
B7-H5 agonists or mAb prevents 
graft-versus-host disease [119], 
and prolongs corneal allograft 
survival in mouse [120].

B7-H7 (HHLA2) Monocytes and 
induced on B 
cells.

TMIGD2 Inhibiting T cells prolifera-
tion, cytokines (IFN-γ, TNF-
α, IL-5, IL-10, IL-13, IL-17 A, 
and IL-22) production.

Inhibiting ERK1/2, 
Akt and NF-κB sig-
naling pathways by 
aggregating SHP1/2 
[121].

Predominantly focus on oncology.

BTNL2 DCs Unidentified Inhibiting the activation 
and proliferation of T cells, 
cytokines production, Th 
differentiation.
Inducing Tregs generation.

Inhibiting Akt sig-
naling pathways.
Inducing Foxo1 
expression [122].

Treatment of recombinant 
BTNL2-IgG2a Fc fusion protein 
ameliorates type 1 diabetes [123] 
and graft-versus-host disease in 
mice [124].
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oligodeoxynucleotide antisense (AS-ODN) that targets 
the transcription of CD80 and CD86 in BMDCs, lead-
ing to the inhibition of NO, TNF-α, and IL-12 secre-
tion [57] and a delayed onset of type 1 diabetes (T1D) in 
NOD mice. These promising preclinical results pave the 
way for clinical trials involving AS-ODN-treated human 
monocyte-derived DCs [58].

The expression of costimulatory molecules on the sur-
face of DCs is regulated by multiple mechanisms. The 
transcription factor Stat1 plays a critical role in acquir-
ing tolerance characteristics, specifically through JAK-
Stat1 signaling that promotes PD-L1 expression [59]. In 
a mouse model with DCs lacking JAK1 (JAK1−/− DCs), 
PD-L1 expression was reduced, leading to increased acti-
vation and proliferation of T cells and a poor prognosis 
in EAE [59]. These findings suggest that targeting JAK 
in DCs could be beneficial for treating autoimmune dis-
eases [60]. Notably, the absence of JAK1 did not impact 
the expression of other inhibitory molecules, such as 
CD270, PD-L2, and galectin-9 [61].

The TNF ligand and TNF receptor superfamilies (TNFRSFs)
The immunoregulatory function of several TNFSF mem-
bers in DCs has been well established (Table  2). These 
include OX40 ligand, TNFRSF5 (CD40), TNFSF15 

(TL1A), CD70, 4-1BB ligand, and TNFRSF18 (GITR). 
In an inflammatory environment, OX40L is primarily 
expressed on antigen-presenting cells (APCs) and binds 
to the transmembrane glycoprotein OX40 on T cell sur-
face, leading to the activation of NF-κB and NFAT sig-
naling pathways. This activation promotes sustained 
activation and expansion of effector T cells and memory 
T cells [62]. By blocking OX40L-OX40 signaling, the dif-
ferentiation of Tregs can be induced, thereby prevent-
ing autoimmune reactions [63]. The interaction between 
CD40 and CD154 (CD40 ligand) plays a central role in 
immunology, with diverse effects on T cell activation. 
Consequently, conditional knockout of CD40 in DCs 
leads to reduced Th1 immune responses and decreased 
plasma IFN-γ levels in DC-specific CD40−/− mice, con-
comitant with a reduction in the occurrence of athero-
sclerosis in this mouse model [64]. Besides the classical T 
cell activation pathway mediated by CD80/CD86-CD28 
signaling, the CD70-CD27 axis represents an equally 
crucial co-stimulatory signaling pathway for T cell activa-
tion [65]. Clinical trials have revealed that the silencing 
of CD70 in DCs can reduce the polarization of Th1 and 
Th2 cells, suggesting its potential feasibility for treating 
immune thrombocytopenia [66].

Table 2  Members of tumor necrosis factor superfamilies (TNFRSF)
Ligand Express on im-

mune cells
Receptor Effects Mechanism on T cells Related autoimmune disease

4-1BB 
ligand

DCs, macro-
phages and 
activated B cells.

4-1BB Inducing CTL responses. Induction of the NF-κB, 
c-Jun and p38 down-
stream pathways [125].

Blockade of 4-1BBL-4-1BB interaction 
prevents acute transplant rejection [126, 
127] and experimental autoimmune 
myocarditis [128] in preclinical trials.

TNFRSF5 
(CD40)

Macrophages and 
DCs.

CD154 Inducing Th1 responses and 
IFN-γ production.

Induction of the ERK1/2, 
JNK, PAK and PI3K-Akt 
signaling pathways [129], 
and inhibiting apoptosis 
[130].

Anti-CD40 mAb is being used in clinical 
trials to treat rheumatoid arthritis [131] 
and pig organ xenotransplantation 
[132].

TNFSF15 
(TL1A)

DCs and 
macrophages.

DR3 Inducing effector/memory 
CD4+ T cell proliferation and 
cytokine (IFN-γ, TNF-α, IL-1α) 
production.
Inhibitings Treg differentiation.

Induction of the MAPK, 
NF-κB and PI3K-Akt signal-
ing pathways [133].

TL1A is specifically elevated in the 
blood and synovial fluid of patients 
with rheumatoid arthritis and systemic 
sclerosis. TL1A blockade could be a 
potential therapeutic strategy in auto-
immune disease [134–136].

CD70 DCs and B cells. CD27 Inducing the activation and 
proliferation of T cells, cytokine 
(IL-2, IL-4, IL-5, IL-6, IL-12, IFN-γ) 
production and antibody 
secretion.

Induction of the NF-κB, 
JNK, Ap-1, ERK and MAPK 
signaling pathways [137].

Anti-CD70 mAb inhibits encephalomy-
elitis and cardiac allograft rejection in 
mice [138, 139].

GITRL Macrophages, 
DCs and B cells.

GITR Inducing the activation and 
proliferation of T cells and 
pro-inflammatory cytokine 
production.

Inhibiting apoptosis.
Induction of the MAPK, 
NF-κB signaling pathways 
[140–142].

Blockade of GITRL-GITR interaction pre-
vents encephalomyelitis [143], allergic 
asthma [144] and experimental colitis 
[145] in mice.

OX40 
ligand

DCs, B cells, and 
macrophages.

OX40 Inducing the activation 
and proliferation of T cells, 
memory T cells formation and 
CTL responses.
Inhibiting Treg differentiation.

Inhibiting apoptosis.
Induction of the NF-κB, 
MAPK, NFATc signaling 
pathways [146].

OX40L-blocking antibody KY1005 
ameliorates graft-versus-host disease in 
nonhuman primate [147]. KY1005 has 
completed phase 2a clinical trial in treat 
atopic dermatitis [148].
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The TLRs family
TLRs are well-defined microbial pattern recognition 
receptors expressed on APCs. They recognize pathogen-
associated molecular patterns, leading to the activation 
of immediate inflammatory responses and subsequent 
intracellular signal transduction pathways. The cyto-
plasmic domain of TLRs recruits various adaptors that 
activate specific downstream signaling pathways, initi-
ating innate immune responses and inducing the secre-
tion of pro-inflammatory cytokines [67]. The selection 
of adaptors determines the specificity of TLR signaling, 
resulting in the activation of specific TLR-defined tran-
scription factors such as NF-κB, PI3K, mitogen-activated 
protein kinases (MAPK), c-Jun, and IRF-3 (among oth-
ers) [67–69]. For instance, myeloid differentiation factor 
88 (MyD88) serves as the adapter protein for TLR2 and 
TLR4 [70], activating the NF-κB and MAPK signaling 
pathways [69]. TLR2/4−/− DCs exhibit decreased expres-
sion of CD86, CD80, and CD40 [71], while transplanta-
tion of corneas into TLR−/− recipients leads to prolonged 
graft survival [71].

Other co-inhibitory molecules on DCs
The expression of co-inhibitory molecules on TolDCs 
triggers contact-dependent inhibitory signals in T cells, 
suppressing proliferation and promoting clonal dele-
tion (Table  3). One such example is the ILT family, 
which acts as inhibitory surface receptors structurally 
and functionally related to killer inhibitory receptors 
[72]. The specific ligand/receptor pathways of ILT are 
still limited, but many TolDCs express ILT, which subse-
quently promotes tolerance by inhibiting T cell prolifera-
tion [73]. Furthermore, iDCs express Fas ligand (FasL), 
which binds to Fas molecules on T cells, leading to T 
cell apoptosis [74]. Consequently, the adoptive transfer 

of FasL-overexpressing human iDCs has been shown 
to prolong the survival of liver allografts in rat recipi-
ents [75]. Additionally, inducing the generation of DCs 
through embryonic stem cells could represent a cost-
effective approach for developing therapeutic vaccines 
that regulate immune tolerance. In an EAE mouse model, 
the adoptive transfer of TRAIL-overexpressing embry-
onic stem cell-derived DCs promotes the generation of 
Tregs and limits disease development [76].

Regulating the secretion of cytokines
Inducing the secretion of anti-inflammatory cytokines
Anti-inflammatory cytokines, such as IL-10 and TGF-β 
produced by TolDCs, induce the differentiation of naive 
T cells into Tregs and Tr1 cells [77]. The adoptive transfer 
of IL-10-overexpressing human iDCs to recipient rats has 
been shown to induce long-term survival of liver grafts 
[75]. Among them, Histone deacetylases (HDACs) regu-
late IL-10 transcription by impacting the phosphoryla-
tion of Stat3, a transcriptional activator of IL-10. Hence, 
overexpression of HDAC6 in DCs can increase IL-10 
generation [78].

IL-27 is a heterodimeric cytokine composed of Epstein-
Barr virus-induced gene 3 (EBI3) and p28 proteins, 
both of which are expressed by APCs, particularly DCs, 
in response to TLR stimulation [79] (Fig.  3). IL-27 lim-
its the differentiation of CD4+ T cells into Th1, Th2, and 
Th17 cells while promoting their differentiation into IL-
10-producing Tr1 cells [80]. Sirtuins 1 (SIRT1), a class III 
histone/protein deacetylase, serves as a negative regula-
tor of IL-27 expression (Fig.  3). Mechanistically, SIRT1 
deacetylates IRF1 to inhibit IRF1 binding to the promoter 
of IL-27, and deletion of SIRT1 in DCs abolish IL-27 
expression and alleviates the occurrence of EAE in mice 
[81].

Table 3  Members of other co-inhibitory molecules on DCs
Co-inhibitory 
molecules

Ligand/Receptor Effects Related transplantation and autoimmune disease

ILT2/3/4 HLA-G Inhibiting the function of effector T 
and NK cells, DCs maturation.
Inducing Tr1 cells differentiation [149].
Inducing Tregs differentiation.

Treatment of recombinant human ILT3.Fc protein ameliorates 
encephalomyelitis in mice [150].
ILT-HLA-G interaction prevents transplant rejection graft-versus-
host disease in mice [151, 152].

FasL Fas Inducing T cells apoptosis. FasL microgels induce immune acceptance of islet allografts in 
nonhuman primates [153].

TIM-3 Gal-9 Inducing Th1 cells deletion. Inhibits 
generation of IFN-γ in CD8+T cells 
[154, 155].

Anti-TIM-3 treatment aggravates lung inflammation and fibrosis 
in mice [156]. TIM-3-overexpressing DCs ameliorates allograft 
rejection in mouse composite tissue allotransplantation [157].

TRAIL DR3/4/5 Inducing T cells apoptosis [158]. Treatment of recombinant TRAIL ameliorates experimental 
colitis [159], arthritis [160] in mice.
Blockade of TRAIL-DR3 interaction prevents acute rejection in 
mouse kidney transplantation [161].

BTLA HVEM Inhibiting DCs maturation [94], proin-
flammatory cytokines production in 
DCs [162]. Inducing Tregs differentia-
tion [163].

Overexpression of BTLA ameliorates allograft rejection in rat 
kidney allotransplantation [164, 165].
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Inhibiting the secretion of pro-inflammatory cytokines
NF-κB activation serves as a major inducer of pro-
inflammatory cytokines production in DCs, triggered by 
various danger signals (Fig.  3). This activation leads to 
the secretion of inflammatory cytokines including TNF-
α, IL-6, IL-8, IL-12, and IL-23, which play vital roles in 
inducing Th1- and Th17-mediated immune responses 
[82]. In multiple studies, the deletion of IL-23p19, and 
IL-12p40 in DCs has been shown to result in a tolerant 
phenotype [83]. The transcription of IL-12 and IL-23 is 
negatively regulated by Stat3, which hinders the recruit-
ment of NF-κB to the p40 promoter, a shared subunit 
between IL-12 and IL-23 (Fig.  3). Additionally, Stat3 
inhibits the role of positive transcription elongation fac-
tor b (P-TEFb) in IL-12p35 initiation transcription [84]. 
Overexpression of constitutively active Stat3 or a consti-
tutive NF-κB repressor in DCs inhibits the secretion of 
IL-23 and IL-12, thereby alleviating the development of 
rheumatoid arthritis [85].

Regulating the migration of DCs
The normal expression of chemokine receptors can pro-
vide some degree of evidence regarding the ability of DCs 
to effectively circulate and localize to the lymph nodes. 
In line with the role of mature molecules in initiating 
protective immunity and maintaining immune toler-
ance, impaired migration of TolDCs can lead to abnormal 
inflammatory activation, while excessive migration of 
immunogenic DCs can also result in abnormal inflamma-
tory activation.

Inhibiting the migration of immunogenic DCs
Preventing the migration of immunogenic DCs from 
bone marrow to secondary lymphatic organs has 
emerged as an effective strategy for preventing auto-
immune reactions. Normally, the migration of immu-
nogenic DCs from the bone marrow to the lymphoid 
organs is tightly regulated and guided by chemokines 
and their corresponding receptors expressed on DCs. 
Upon exposure to inflammatory and pathogenic signals, 
iDCs undergo maturation and upregulate the expression 

Fig. 3  Generation of cytokines and their downstream signaling pathway in DCs.
 TLRs, CD40 and IFN-γ promote activation of intracellular signaling cascades, resulting in activation of transcription factors such as IRF7, NF-κB and AP-1. 
These regulate cytokine genes transcription, including IL-27, IL-12, IL-23 and IL-10. The expression of the IL27EBI3 subunit can be induced through intra-
cellular signaling cascades coming from the TLR2/TLR4/TLR9/-adaptor MyD88-NF-κB signaling pathway. Other signaling pathways that participate in the 
induction of IL-27p28 synthesis are TLR4-adaptor MyD88-AP-1, TLR3/TLR4-adaptor TRIF-IRF3/IRF7 and IFN-γ-adaptor MyD88-Stat1-IRF8. The expression 
of the IL-12 and IL-23 can be induced through signals coming from the MAPK, JAK, and PI3K signaling pathway. SIRT1 is a deacetylase that inhibits gene 
transcription by removing acetyl groups from transcription factors. SIRT1 deacetylates the transcription factor IRF1, which drives the generation of IL-27. 
Additionally, SIRT1 limits the production of IL-12 and IL-23 by deacetylating p53 and p65 (also known as RelA), a subunit of NF-κB. Inflammation increases 
the nucleoplasmic transporting of SIRT1 to the cytoplasm. This will decrease SIRT1 protein levels through proteasomal degradation in the cytoplasm. 
At the same time, the transcription of NF-κB-dependent pro-inflammatory gene, such IL-12, is increased once SIRT1 is reduced. The expression of IL-10 
through PI3K-mTORC1-Stat3 signaling pathway is inhibited in response to TLR stimulation. Ac: acetylation, P: phosphorylation
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of chemokine receptor CCR7. CCR7 interacts with its 
ligands CCL19 and CCL21, leading to the migration of 
immunogenic DCs along the CCL21 gradient into the 
subcapsular sinuses of the lymph nodes and eventually 
reaching the T-cell-rich regions. In these regions, immu-
nogenic DCs can induce the polarization of naive T cells 
[86].

Targeting CCR7 and CCR2 has been shown to decrease 
the migration of DCs as well as reduce the production of 
IL-12p70 [87]. Previous study demonstrated that CCR2 
can influence the transcriptional activity of NF-κB, which 
in turn promotes the production of pro-inflammatory 
cytokines [88]. Interestingly, CCR7−/− mice exhibited an 
autoimmune phenotype characterized by extensive lym-
phocyte infiltration in organs and an abundance of auto-
antibodies in the blood [89]. This phenotype could be 
attributed to the higher expression of CD80 and CD86 
on CCR7−/− DCs [90], suggesting a dual role of CCR7 in 
both immune response and immune tolerance.

Gal-1, highly expressed by human lymphoendothelial 
cells, selectively modulates the migration of specific DC 
subpopulations. It inhibits the migration of immuno-
genic DCs but has no effect on the migration of tolero-
genic DCs. This differential migration is mediated by 
the difference in the 2o glycosylation of CD43, a Gal-1 
receptor, between immunogenic DCs and tolerogenic 
DCs. Binding of Gal-1 to immunogenic DCs decreases 
the phosphorylation and activity of the protein tyrosine 
kinase Pyk2, thereby reducing their migration [91]. Fur-
thermore, Gal-3 is concentrated in membrane ruffles in 
DCs exposed to chemokines, and its deficiency results 
in structural differences in membrane ruffles, suggesting 
that the absence of this protein in membrane microdo-
mains may impair DC migration [92]. Deletion of Gal-1 
in mice increases their susceptibility to autoimmune dis-
eases [93], providing an additional mechanism for treat-
ing autoimmune diseases and transplant rejection.

Inducing the migration of TolDCs
In homeostasis, iDCs undergo spontaneous maturation 
and upregulate the expression of CCR7, they then migrate 
to lymph nodes to present self-antigens or harmless anti-
gens, thereby preventing immune reactions against these 
antigens. Overexpression of CCR7 in iDCs has been 
shown to increase their migration with immunotoler-
ant phenotype [94]. A study has demonstrated that the 
concurrent expression of BTLA and A20 in DCs pro-
motes the expression of CCR7, and confers tolerogenic 
properties by decreasing surface expression of CD40 and 
CD86 [95]. The chemokine receptor 6 (D6), a member of 
the “clearance receptor” family, has been found to elimi-
nate more than 12 chemokines, including CCR1-CCR5 
[96]. D6−/− BMDCs exhibited decreased expression of 
MHC-II, CD40, CD80, and CD86 in response to LPS. 

Consequently, D6−/− mice exhibited inhibited rejection 
of transplanted corneas [97] and delayed EAE occurrence 
[98].

Optimizing TolDC therapy and future perspectives
Optimizing antigen specificity is a key factor in enhanc-
ing the therapeutic efficacy of TolDC products (Fig.  1). 
Directed DNA gene editing technologies, such as 
TALEN, ZFN, and CRISPR, have emerged as valuable 
tools for gene deletion. Although the application of these 
gene editing techniques in human DCs is still in nascent 
stages, there is a high likelihood of employing these tech-
nologies to generate more efficacious TolDC products. 
TLRs are prime examples, and these molecules have been 
demonstrated to be a co-stimulatory molecule for CTL 
response, which can be deleted using these approaches. 
Indeed, the benefits of CRISPR-mediated deletion of 
TLRs and its constraining effect on T cell responses 
have been validated in response to LPS stimulation, and 
clinical trials are currently investigating the potential 
advantages of this approach [99]. Another advantage of 
utilizing directed DNA gene editing technologies is that 
the directed gene deletion system is co-delivered with a 
DNA template to facilitate homologous recombination, 
they can be employed to insert genes of interest into 
specified genomic loci. This eliminates safety concerns 
associated with conventional viral methods and enables 
the modulation of ectopic gene expression using endog-
enous promoters and enhancers. For instance, melanoma 
manipulates the metabolism of DCs through the para-
crine β-catenin pathway to induce local immune toler-
ance [100]. Utilizing CRISPR to insert β-catenin into 
the target gene locus, thus establishing an endogenous 
immune-privileged site capable of expressing IDo in a 
more physiologically relevant manner [100]. This concept 
is also of significant relevance for the future development 
of next-generation TolDC vaccines.

Current strategies for TolDC cell therapy utilize 
autologous cells, which are personalized and diffi-
cult to standardize, leading to high costs. Moreover, 
many autoimmune diseases stem from defective DCs. 
Consequently, using autologous cells for DC products 
often yields suboptimal results. For instance, vitamin 
D-TolDCs produced by multiple sclerosis patients dis-
play transcriptomic differences compared to those of 
healthy individuals [101]. Using gene-editing technology 
to repair defective DCs before reinfusion is an imagina-
tive solution. Allorecognition primarily arises from the 
interaction of human leukocyte antigen (HLA) molecules 
between the donor and recipient. The most effective 
approach to maintaining autoimmune hyporeactivity and 
inducing long-term allograft survival involves eliminat-
ing HLA mismatch molecules. DCs differentiated from 
HLA-DR-knockout induced pluripotent stem cells have 
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demonstrated immune tolerogenicity and overcame the 
limitations associated with cell origin [102]. Unfortu-
nately, this approach also renders the cells susceptible to 
NK cell-mediated killing, a consequence of “loss of self”. 
Furthermore, DCs derived from different donors exhibit 
distinct responses to the same stimulus, such as LPS, sug-
gesting the combined influence of genetic factors and 
environmental exposure in determining DC functional-
ity and size [99]. Therefore, it is crucial to comprehen-
sively characterize the inflammatory, transcriptomic, 
epigenomic, and metabolic profiles of each disease and 
conduct in-depth phenotypic analysis to discern the dis-
parities between monocytes and TolDCs generated from 
healthy individuals versus those with autoimmune dis-
eases. Such efforts are essential in preparing TolDC prod-
ucts with well-defined immunomodulatory capabilities.

Conclusions
In recent years, clinical trials have provided evidence of 
the safety of TolDC treatment, marking the emergence 
of a new era in cell-based immunotherapy for autoim-
munity and transplant rejection. However, in order for 
TolDC therapy to become a preferred treatment option, 
strategies to enhance the potency of these cells need 
to be explored. Currently, it remains unclear whether 
TolDCs constitute a distinct lineage or merely repre-
sents a specific activation state of conventional DCs. It is 
conceivable that the tolerogenic phenotype is governed 
by specific signaling pathways and transcriptional pro-
grams, such as those regulated by Stat3, AhR, and Socs2 
[103]. Thus, understanding the pathways through which 
TolDCs develop tolerance mechanisms at the transcrip-
tome, metabolome, and epigenome levels is crucial. 
Preclinical studies have demonstrated that immune toler-
ance and antigen specificity can be conferred to TolDCs 
using gene editing techniques. Thus, gene-editing tech-
niques are needed to be developed to ensure the accu-
racy of editing. Consequently, several clinical trials are 
presently investigating the safety and efficacy of gene-
modified TolDCs in suppressing autoimmune responses. 
These trials aim to achieve a more precise understand-
ing of the interactions between gene-modified TolDCs 
and other inflammatory cells. Furthermore, it should be 
acknowledged that the utilization of specific gene-mod-
ified TolDC may be not suitable for treatment of a vari-
ety of autoimmune diseases, including the evaluation of 
optimal dosages and infusion schedules for genetically-
modified TolDC, as well as the determination of appro-
priate immunosuppressive regimen for a specific disease. 
Another pivotal facet within the realm of gene-modified 
TolDC therapy involves the identification of effective and 
informative assays for monitoring the efficacy and poten-
tial adverse immune responses, along with any unde-
sired signs of activation. Ongoing clinical trials, with a 

focus on precise immune monitoring, are poised to yield 
the discovery of efficacy biomarkers. These findings will 
serve as crucial tools for enhancing regulatory cell ther-
apy, with the aim of preventing organ transplant rejection 
and fostering long-term tolerance. Finally, the incorpora-
tion of gene-editing technology is, therefore, the logical 
next step in advancing TolDC therapy, holding significant 
implications in the quest for autoimmunity and trans-
plant tolerance.
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