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Abstract 

Background Traditional biomarkers of chronic kidney disease (CKD) detect the disease in its late stages and hardly 
predict associated vascular damage. Integrin‑linked kinase (ILK) is a scaffolding protein and a serine/threonine protein 
kinase that plays multiple roles in several pathophysiological processes during renal damage. However, the involve‑
ment of ILK as a biomarker of CKD and its associated vascular problems remains to be fully elucidated.

Methods CKD was induced by an adenine‑rich diet for 6 weeks in mice. We used an inducible ILK knockdown 
mice (cKD‑ILK) model to decrease ILK expression. ILK content in mice’s peripheral blood mononuclear cells (PBMCs) 
was determined and correlated with renal function parameters and with the expression of ILK and fibrosis and inflam‑
mation markers in renal and aortic tissues. Also, the expression of five miRNAs that target ILK was analyzed in whole 
blood of mice.

Results The adenine diet increased ILK expression in PBMCs, renal cortex, and aortas, and creatinine and urea nitro‑
gen concentrations in the plasma of WT mice, while these increases were not observed in cKD‑ILK mice. Furthermore, 
ILK content in PBMCs directly correlated with renal function parameters and with the expression of renal and vascular 
ILK and fibrosis and inflammation markers. Finally, the expression of the five miRNAs increased in the whole blood 
of adenine‑fed mice, although only four correlated with plasma urea nitrogen, and of those, three were downregu‑
lated in cKD‑ILK mice.

Conclusions ILK, in circulating mononuclear cells, could be a potential biomarker of CKD and CKD‑associated renal 
and vascular damage.
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ILK content in circulating mononuclear cells reflects renal 
and vascular damage in a CKD experimental model.

Background
Chronic kidney disease (CKD) is defined by a glomerular 
filtration rate (GFR) under 60 ml/min/1.73m2 or markers 
of kidney damage for at least 3  months [1, 2]. Globally, 
more than 850 million individuals had kidney diseases 
in 2017 [3], and 1.2 million people died from CKD the 
same year [4]. CKD is reaching epidemic levels due to 
the increasing prevalence of diabetes mellitus, hyper-
tension, and obesity, as well as aging of the population. 
The Global Burden of Diseases, Injuries, and Risk Factors 
Study projected that CKD will rise in ranking from the 
16th global cause of death in 2016 to the 5th position in 
2040 [5]. Additionally, CKD has a significant socioeco-
nomic impact on society. The extrapolated annual cost of 
all CKD is at least as high as that for cancer or diabetes, 
even more so if indirect costs related to cardiovascular 
complications are included [6].

Nowadays, the link between CKD and cardiovascular 
disease (CVD) is indisputable and CVD mortality is sig-
nificantly higher in patients with CKD than in the gen-
eral population. Accumulation of uremic toxins leads to 
systemic inflammation, which is a key predictor of cardi-
ovascular events and death in CKD, and vascular calcifi-
cation and arterial stiffness are major contributors to this 

elevated mortality [7]. Due to the process of cardiovas-
cular damage starts very early during progression, ear-
lier identification and treatment of CVD in patients with 
CKD may reduce the severity of the disease and improve 
the outcomes of those who reach end-stage renal disease 
treatment. The trouble with the diagnosis of CKD is that 
most patients are asymptomatic in the early stages of the 
disease and its course is difficult to predict.

In clinical practice, CKD is diagnosed based on meas-
urements of GFR, creatinine, cystatin C, blood urea 
nitrogen, and albuminuria, which do not detect CKD in 
the early stages nor predict the course of the disease [8]. 
Furthermore, the utility of these traditional biomarkers 
for cardiovascular prediction is controversial [9]. On the 
other hand, renal biopsy is an essential procedure in the 
diagnosis of renal diseases, although it carries the risk of 
major complications [10], such as bleeding and renal loss. 
Many reviews have focused on the research of new non-
invasive biomarkers of CKD and vascular pathologies in 
CKD [11], including miRNAs, endogenous non-coding 
RNA molecules that regulate gene expression by repress-
ing the translation and/or inducing the degradation of 
their mRNA targets [12, 13]. However, verification, vali-
dation, and commercial development of novel biomark-
ers is an immensely expensive and high-risk process.

Integrin-linked kinase (ILK) is a scaffolding protein 
and a serine/threonine protein kinase that plays multi-
ple roles in regulating integrin-mediated processes such 
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as cell adhesion, survival, proliferation, migration, and 
extracellular matrix (ECM) deposition [14]. Both upreg-
ulation and downregulation of ILK expression and/or 
activity have been implicated in the pathogenesis of a 
wide variety of diseases such as diabetes [15], myocardial 
infarction [16], obesity [17] or pulmonary hypertension 
[18], suggesting ILK as a molecular target and a prog-
nostic biomarker of these diseases. Several publications, 
including ours, have described ILK as a mediator in dif-
ferent pathological processes that occur during renal 
damage, including inflammatory responses, epithelial-
mesenchymal transition, and fibrosis [19–21]. Also, we 
have demonstrated that ILK depletion in  vivo prevents 
CKD progression induced by an adenine-rich diet [22]. 
Regarding vascular physiologic and pathologic processes, 
in vivo and in vitro models showed that ILK plays a criti-
cal role in regulating vascular tone [23, 24], and leucocyte 
adhesion to the endothelium [25]. Recently, our group 
has demonstrated that ILK is required for the formation 
of podosomes, structures that mediate cell adhesion and 
migration of monocytes across ECM-based barriers [26], 
which cause dysfunction and vascular damage in the con-
text of uremia.

The finding of new non-invasive biomarkers would 
improve our ability to diagnose CKD and its vascular-
associated damage earlier and maybe predict its progres-
sion. Therefore, the aim of this study is to investigate the 
potential of ILK content in circulating mononuclear cells 
as a biomarker of CKD-associated renal and vascular 
damage in the context of experimental CKD. Addition-
ally, the possibility that some miRNAs involved in the 
regulation of ILK could constitute alternative biomarkers 
to ILK itself was also tested.

Methods
Animal study design
All procedures involving animals were previously 
approved by the Institutional Animal Care and Use Com-
mittee of the University of Alcalá and conformed to 
Directive 2010/63/EU of the European Parliament. Ani-
mals were housed in a pathogen-free and temperature-
controlled room (22  °C ± 2  °C). Food and water were 
available ad libitum.

CKD was induced in mice by feeding a diet containing 
0.2% adenine (Sigma, St Louis, MO, USA) as previously 
described [22]. To decrease ILK expression, we used 
an inducible ILK knockdown mice (cKD-ILK) model, 
explained in prior publications [22, 26]. Briefly, condi-
tional inactivation of the ILK gene was accomplished by 
crossing C57Bl/6 mice homozygous for the floxed ILK 
allele (LOX mice) with homozygous mice carrying a 
tamoxifen-inducible CreER(T) recombinase gene, which 
express Cre under the control of the cytomegalovirus 

promoter (CRE mice). Tamoxifen was dissolved in a corn 
oil/ethanol (9:1) mixture. Male CRE-LOX mice (8-week-
old), heterozygous for both transgenes, were injected 
intraperitoneally with 1.5 mg of tamoxifen once per day 
for 5 consecutive days to induce ILK depletion. Control 
animals were injected with the vehicle, a corn oil/ethanol 
(9:1) mixture. Three weeks after the injections, tail DNA 
was genotyped by PCR with primers allow to distinguish 
excised ILK gene (230 bp) or non-excised ILK (2100 bp): 
CCA GGT GGC AGA GGT AAG TA and CAA GGA ATA 
AGG TGA GCT TCA GAA  [22, 26]. PCR DNA products 
were then analyzed by 1.5% agarose gel electrophoresis. 
Tamoxifen-treated CRE-LOX mice displaying successful 
depletion of ILK were termed cKD-ILK mice, and their 
control vehicle-treated CRE-LOX mice were termed 
wild-type (WT). These animals were also fed with the 
adenine diet. After 6 weeks, mice were anesthetized, and 
peripheral blood was extracted intracardially and col-
lected in tubes with 0.1% EDTA as anticoagulant. Plasma 
was separated by centrifugation at 3000 rpm for 15 min 
and stored at − 80  °C until assayed. Peripheral blood 
mononuclear cells (PBMCs) were isolated by Ficoll-
Paque density gradient centrifugation (Lymphocytes Iso-
lation Solution, Rafer, UK). Renal cortex (RC) and aortas 
were collected and, together with the PBMCs, they were 
stored in RNAlater solution (Life Technologies, Carlsbad, 
CA, USA) at − 80ºC for the RT-qPCR assays.

Renal function measurements
Plasma creatinine (700,460; Cayman Chemical; Ann 
Arbor, MI, USA) and urea nitrogen (EIABUN; Invitro-
gen, Thermo Fisher Scientific; Waltham, MA, USA) were 
measured using colorimetric assay kits, according to the 
manufacturer’s instructions. The spectrophotometric 
measurements were performed in a Victor X4 Multila-
bel Plate Reader (PerkinElmer, Waltham, MA, USA) at a 
wavelength of 490  nm (plasma creatinine) and 450  nm 
(plasma urea nitrogen).

Reverse transcription– quantitative polymerase chain 
reaction (RT‑qPCR)
Total RNA of each sample was extracted with TRIzol, 
transcribed into cDNA with a High-Capacity cDNA 
Reverse Transcription Kit (Life Technologies, Carlsbad, 
CA, USA) and RT-qPCR analysis was performed in a 
7500 qPCR thermocycler. The normalized gene expres-
sion method  (2–ΔΔCT) for relative quantification of gene 
expression was used [22].

Non-excised ILK mRNA levels were measured in mice 
PBMCs, renal cortex (RC) and aortas by RT-qPCR with 
SYBR Green Master Mix to verify that ILK depletion had 
also occurred in these cells and tissues [22, 26]. Prim-
ers GGG CTC TTG TGA GCT TCT GT and GAG TGG 
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TCC CCT TCC AGA AT, designed to recognize the cDNA 
sequence between exons within floxed areas 6 and 7 [22, 
26] were used. For the rest of the genes, RT-qPCR with 
SYBR Green Master Mix were performed using prim-
ers designed in the PUBMED Gene Database: colla-
gen I (COL I), 5′-TCC TGG CAA CAA AGG AGA CA-3′ 
(forward) and 5′-GGG CTC CTG GTT TTC CTT CT-3′ 
(reverse); fibronectin (FN), 5′-TGA GCG CCC TAA AGA 
TTC CA-3′ (forward) and 5′-TAG CCA CCA GTC TCA T G 
T GC-3′ (reverse); TGF-β1, 5′-TTG CTT CAG CTC CAC A G 
A GA-3′ (forward) and 5′-TGG TTG TAG AGG GCA AGG 
AC-3′ (reverse); TNF-α, 5′- TGG CCC AGA CCC TCA C A 
C TCA-3′ (forward) and 5′-GGC TCA GCC ACT CCA GC 
T GC-3′ (reverse); IL-6, 5′-CCG GAG AGG AGA CTT C A C 
AGA GGA -3′ (forward) and 5′- AGC CTC CGA CTT GTG 
A A G TGG TAT A-3′ (reverse); β-actin, 5′-GAC GGC C A G G 
T C ATC ACT AT-3′ (forward) and 5′-CTT CTG CAT CCT G 
T C AGC AA-3′ (reverse).

miRNA search and extraction, and RT‑qPCR
To investigate novel potent biomarkers in the whole 
blood of mice fed a diet rich in adenine, we performed 
bioinformatic analysis in different miRNAs-specific 
databases. We searched which miRNAs target ILK in 
TargetScan (https:// www. targe tscan. org/ vert_ 80/) and 
miRbase databases (https:// www. mirba se. org/) and 
which of them were common between mice and humans, 
which is important when establishing interspecies paral-
lels. Then, we investigated which of these miRNAs were 
more expressed in kidney in https:// ccb- web. cs. uni- saarl 
and. de/ tissu eatlas  [27] and, finally, we selected 5 miR-
NAs: miR-542-3p, miR-758-3p, miR-361-3p, miR-30c-
1-3p and miR-30c-2-3p. The binding sites of miRNAs in 
the ILK 3’-UTR region were predicted via TargetScan 
database.

To analyze the expression of miRNAs in whole blood 
of mice, peripheral blood was extracted intracardially 
and collected in tubes of PAXgene Blood RNA (BD Bio-
sciences; San Jose, CA, USA). Extraction of miRNAs was 
performed using the QIAcube Connect (Qiagen; Venlo, 
Netherlands), following manufacturer’s instructions. 
Concentration of miRNAs was determined in a spectro-
photometer (NanoDrop) and miRNAs were transcribed 
into cDNA with the miRCURY LNA RT kit (Qiagen; 
Venlo, Netherlands). RT-qPCRs were carried out using 
primers against miR-542-3p, miR-758-3p, miR-361-3p, 
miR-30c-1-3p and miR-30c-2-3p, and with the miRCURY 
LNA SYBR Green PCR kit (Qiagen; Venlo, Netherlands). 
miR-103a-3p was used as endogenous control. The analy-
sis was performed in a 7500 qPCR thermocycler and the 
normalized gene expression method  (2–ΔΔCT) for relative 
quantification of gene expression was used [22].

Statistical analysis
All the data were analyzed with the GraphPad Prism 
software (La Jolla, CA, USA). The results are expressed 
as the mean ± SEM. As the number of animals or sam-
ples in the different experiments was never over 10, non-
parametric statistics were used for comparisons, applying 
the Kruskal–Wallis test with Mann–Whitney post-test 
(non-paired data) or the Friedman test with Wilcoxon 
post-test (paired data). In both cases, Bonferroni correc-
tion was used. Correlation analysis was performed using 
linear regression for each genotype (combining WT 
Control, cKD-ILK Control, WT Adenine, and cKD-ILK 
Adenine treatments) and plotted on the same graph. A p 
value < 0.05 was considered statistically significant.

Results
ILK content in PBMCs correlates directly with renal 
function and ILK expression in renal cortex (RC) and aorta 
of mice with experimental CKD
To investigate the possible relationship between ILK 
content in PBMCs and renal function, we measured cre-
atinine and urea nitrogen in the plasma of WT and cKD-
ILK mice fed standard or adenine-rich diet for 6 weeks. 
As we previously published [22], plasma creatinine and 
plasma urea nitrogen were significantly higher in mice 
fed adenine-rich diet, compared to mice fed standard 
diet, while this increase was significantly lower in cKD-
ILK mice (Table  1). Then, we analyzed the expression 
of ILK in PBMCs, RC, and aortas of the same animals. 
These results showed a statistically significant increase 
in non-excised ILK mRNA expression in PBMCs, RC 
(as we previously published in [22]) and aortic tissues of 
mice fed the adenine-rich diet, compared to mice fed the 
standard diet, while ILK transgenic depletion prevented 
the ILK expression increase in cKD-ILK mice (Fig. 1).

Table 1 Renal function parameters of wild‑type (WT) and ILK 
conditional‑knockdown (cKD‑ILK) mice

Renal function was assessed by measuring plasma creatinine and urea nitrogen 
concentrations of WT and cKD-ILK mice fed a standard (Control) or an adenine-
rich (Adenine) diet for 6 weeks. Results are shown as mean ± SEM
* p < 0.05 vs. WT Control
** p < 0.05 vs. cKD-ILK Control
*** p < 0.05 vs. WT Adenine. This experiment was made in only one cohort of 18 
animals. n = 3–6 animals/group

Groups WT
Control

cKD‑ILK
Control

WT
Adenine

cKD‑ILK
AdeninePlasma

Parameters

Creatinine (mg/dl) 0.26 ± 0.01 0.31 ± 0.01 0.86 ± 0.04*,** 0.35 ± 0.01*,***

Urea nitrogen 
(mg/dl)

21.4 ± 2.1 21.6 ± 3.0 98.8 ± 14.9*,** 40.1 ± 9.8***

https://www.targetscan.org/vert_80/
https://www.mirbase.org/
https://ccb-web.cs.uni-saarland.de/tissueatlas
https://ccb-web.cs.uni-saarland.de/tissueatlas
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Given that with these results we obtained a wide range 
of ILK concentrations in PBMCs and in renal and aor-
tic tissues, we proceeded to correlate the ILK content in 
PBMCs with plasma creatinine (Fig. 2a) and urea nitro-
gen (Fig. 2b). Interestingly, a statistically significant direct 
correlation was shown with both renal function parame-
ters. In addition, our results showed a statistically signifi-
cant direct correlation between ILK mRNA expression in 
PBMCs and in RC (Fig. 3a) and aorta (Fig. 3b), revealing 
a highly significant relationship between circulating and 
local ILK content.

ILK content in PBMCs reflects renal and vascular damage 
in a CKD experimental model
To test whether ILK content in PBMCs may also reflect 
renal and vascular fibrosis and inflammation, both con-
sidered pathogenic events that characterize organ dam-
age and, in some cases, disease progression, we analyzed 
the correlations between ILK content in PBMCs and 
fibrosis markers and inflammatory cytokines in mice 
renal and aortic tissues. Our results showed a statistically 
significant direct correlation between ILK in PBMCs 
and the expression of collagen I (Fig.  4a-b), fibronectin 

(Fig.  4c-d), the profibrotic cytokine TGF-β1 (Fig.  4e-f ), 
TNF-α (Fig.  4g-h), and IL-6 (Fig.  4i-j) both in RC and 
aortas.

The expression of miRNAs that target ILK correlates 
directly with renal function in a CKD experimental model
After searching different miRNA-specific databases (see 
Methods section), five miRNAs that target ILK were 
selected as possible potent biomarkers of CKD in whole 
blood of mice: miR-542-3p, miR-758-3p, miR-361-3p, 
miR-30c-1-3p, and miR-30c-2-3p. Interestingly, a sig-
nificant increase in the levels of all five miRNAs in the 
whole blood of adenine-fed mice was observed compared 
to controls (Table  2). However, a statistically significant 
direct correlation only was observed between plasma 
urea nitrogen and the expression of miR-542-3p, miR-
758-3p, miR-361-3p, and miR-30c-2-3p (Fig. 5).

Discussion
The main finding of the present work was that ILK con-
tent in circulating mononuclear cells strongly correlates 
with ILK content, and fibrosis and inflammation markers, 
in kidneys and aortas. Correlation coefficients obtained 

Fig. 1 ILK content increases in PBMCs, RC, and aorta of adenine‑fed mice. Wild‑type (WT) and ILK conditional‑knockdown (cKD‑ILK) mice were 
fed a standard (Control) or an adenine‑rich (Adenine) diet for 6 weeks. Non‑excised ILK mRNA expression in peripheral blood mononuclear 
cells (PBMCs) (a), renal cortex (RC) (b), and aorta (c), normalized against β‑actin as the endogenous control, was measured. Results are shown 
as mean ± SEM. *p < 0.05 vs. WT Control; **p < 0.05 vs. cKD‑ILK Control; ***p < 0.05 vs. WT Adenine. This experimental design was replicated in two 
cohorts with sample sizes of 15 and 13 animals, respectively. n = 3–9 animals/group
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for the different analysis performed ranged between 
0.84 and 0.93, with statistical significances always under 
0.0001, suggesting that ILK content in circulating mono-
nuclear cells reflects rather well the pathological changes 
that take place at renal and vascular levels in CKD.

The discovery of new potential biomarkers will pro-
vide non-invasive and safe approaches to obtaining rel-
evant tools for the early diagnosis and prognosis of CKD 
patients [28]. Several investigations have identified ILK 
as a biomarker, especially in cancer since its involvement 
in migration and invasion processes [29, 30]. However, 
to the best of our knowledge, no study has ever reported 
whether ILK could be useful as a CKD biomarker despite 
its elevated expression levels observed in a wide vari-
ety of renal diseases [31–33]. To test this possibility, we 
used animals in which we could achieve a wide range of 
ILK concentrations. Advanced CKD was caused by the 
administration of high amounts of adenine in the diet 
for 6 weeks, which induces a profile of tubulointerstitial 

damage similar to that seen in human CKD. These ani-
mals exhibited increased plasma creatinine (approxi-
mately 3.3-fold) and urea nitrogen (approximately 
4.5-fold) concentrations, as well as increased kidney ILK 
contents [22]. ILK depletion in mice was achieved with 
an inducible knockdown ILK global model, previously 
described by our group, which was used to demonstrate 
the role of ILK in the genesis of chronic renal damage 
[22]. Present experiments confirm published results, with 
changes in ILK renal content comparable to those previ-
ously observed, increased content in adenine-fed mice 
and decreased content in knockdown animals, as well as 
adenine-induced renal dysfunction that was prevented 
by ILK depletion. Additionally, an increased ILK content 
was also observed in vascular walls.

The good correlations between ILK content in circulat-
ing mononuclear cells and the renal function parameters 
tested in this study support the hypothesis that ILK can 
be considered a good biomarker of renal dysfunction. 

Fig. 2 ILK content in PBMCs of mice correlates with renal function parameters. Wild‑type and ILK conditional‑knockdown mice were fed a standard 
or an adenine‑rich diet for 6 weeks. ILK mRNA expression in peripheral blood mononuclear cells (PBMCs) was confronted with the values of plasma 
creatinine (a) and plasma urea nitrogen (b) (mg/dl). This experiment was made in only one cohort of 18 animals. n = 3–6 animals/group. The analysis 
is detailed in the Methods section
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However, there are already other biomarkers, such as 
creatinine, blood urea nitrogen, cystatin, or albuminu-
ria that detect CKD even in the early stages of diseases 
and are routinely performed in clinical practice [8]. For 
this reason, we investigated whether ILK could serve as 
a biomarker of renal and vascular tissue damage. Renal 
fibrosis is one of the most important pathological pro-
cesses of CKD and its deregulation is decisive to lead 
to renal failure [34, 35], while renal inflammation is an 
essential pathological change that is closely associated 
with the development of renal and vascular damage 

[36]. Our excellent correlations between the ILK con-
tent in circulating mononuclear cells and the expression 
of fibrosis and inflammation markers, in addition to its 
own expression, in kidneys and aortas demonstrate the 
relevance of mononuclear cell ILK content as a reflec-
tion of what occurs in these tissues. The reason why ILK 
increases in circulating mononuclear cells when renal 
and vascular damage occurs in CKD is not yet clear. 
Several studies corroborate the hypothesis whereby the 
accumulation of uremic toxins in the organism of CKD 
patients is involved in the development of CKD-related 

Fig. 3 ILK content in PBMCs correlates with ILK content in RC and aorta of mice. Wild‑type and ILK conditional‑knockdown mice were fed 
a standard or an adenine‑rich diet for 6 weeks. ILK mRNA expression in peripheral blood mononuclear cells (PBMCs) was confronted with the values 
of ILK mRNA expression in renal cortex (RC) (a) and aorta (b) of mice. This experimental design was replicated in two cohorts with sample sizes of 15 
and 13 animals, respectively. n = 4–9 animals/group. The analysis is detailed in the Methods section

(See figure on next page.)
Fig. 4 ILK content in PBMCs correlates with fibrosis and inflammation marker expression in RC and aorta. Wild‑type and ILK conditional‑knockdown 
mice were fed a standard or an adenine‑rich diet for 6 weeks. ILK mRNA expression in peripheral blood mononuclear cells (PBMCs) was confronted 
with the values of collagen I (COL I) (a, b), fibronectin (FN) (c, d), TGF‑β1 (e, f), TNF‑α (g, h), and IL‑6 (i, j) mRNA expression in renal cortex (RC) (a, c, 
e, g, i) and aorta (b, d, f, h, j) of mice. This experimental design was replicated in two cohorts with sample sizes of 15 and 13 animals, respectively. 
n = 4–8 animals/group. The analysis is detailed in the Methods section
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Fig. 4 (See legend on previous page.)
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cardiovascular damage, systemic inflammation, and 
immune deficiency [37–40]. In this regard, our group 
demonstrated that ILK activity is involved in monocyte 
adhesion and migration induced by uremic toxins [26], 
which might cause endothelial dysfunction. Therefore, 
uremia could probably be the reason why ILK expres-
sion is increased in circulating mononuclear cells during 
CKD. However, our in vitro experiments did not show an 
increase in ILK content of monocytes treated with ure-
mic toxins [26], perhaps due to the low percentage of 
monocytes in blood compared to other types of circu-
lating mononuclear cells. Altogether, these results dem-
onstrate that ILK detection in circulating mononuclear 
cells could indeed be a useful method to detect renal and 
vascular fibrosis and inflammation, without the need 
for invasive or expensive methods method such as renal 
biopsy or vascular imaging. Adequately tested in human 
cohorts, the measurement of ILK content in mononu-
clear circulating cells could become a valuable prognostic 
biomarker, as it informs about the current degree of tis-
sue damage.

Most of the molecules tested as possible biomarkers 
in CKD have been evaluated in blood and urine samples 
[8, 41]. Even though both blood and urine samples are 
promising, some reviews propose that urine biomarkers 
are better at predicting a rapid decline of renal function 
and CKD diagnosis compared with blood biomarkers [8]. 
For example, urinary neutrophil gelatinase–associated 
lipocalin (NGAL) levels in humans correlated with renal 
dysfunction, interstitial fibrosis, and tubular atrophy 
[42]. Kidney injury molecule-1 (KIM-1) urinary excre-
tion has been shown to be a highly sensitive and specific 
marker of acute kidney injury [43]. The decline in serum 
and urinary Klotho concentration has been identified 

as an early CKD biomarker, and it is able to predict car-
diovascular risk [44]. Furthermore, studies based on the 
measurement of estimated glomerular filtration rate and 
albuminuria have demonstrated that these parameters 
independently predict cardiovascular risk [9]. In contrast, 
the information concerning experimental approaches 
based on the use of circulating cellular biomarkers in 
CKD is scarce, and our study supports the potential 
applications of this strategy.

On the other hand, many works have described the 
role of different miRNAs in renal diseases, both as ther-
apeutic targets and as biomarkers [45, 46]. The fact that 
miRNAs can be detected in biofluids, such as blood 
and urine, as part of protein complexes or in extracel-
lular vesicles, can be useful to investigate their poten-
tial as biomarkers in many diseases including CKD in 
a non-invasive way [47]. In our case, we decided to use 
the whole blood of the mice to analyze the expression of 
different miRNAs that target ILK, allowing us to access 
both circulating mononuclear cells (just as ILK was ana-
lyzed) and extracellular organelles. To select our study 
miRNAs, we reviewed the publications that show which 
miRNAs have ILK as a target. ILK has been determined 
as the target of miR-542-3p and miR-625-3p in different 
pathologies, especially cancer [48, 49]. However, since 
miR-625-3p is not conserved between mice and humans 
according to the TargetScan database, we discarded it for 
our study. The rest of the miRNAs were selected as we 
explain in the Methods section. Additionally, the poten-
tial biological relevance of some of these miRNAs was 
also supported by experimental evidence. MiR-542-3p 
was found to be highly expressed in an in  vitro model 
based on the high glucose treatment on the HK-2 cells 
[50]. In renal tissues of in vivo models, both miR-542-3p 
and miR-361-3p expressions were increased in a rat 
model of unilateral ureteral obstruction [50, 51], while 
miR-30c expression was significantly decreased in a mice 
model of diabetic nephropathy [52]. However, miR-30c-
2-3p expression was increased under hypertonicity in 
KC3AC1 cells from mouse kidney cortical collecting 
ducts and in the kidneys of a hypertonicity mice model 
[53]. Conversely, miR-542-3p expression was decreased 
in the aortas of a rat model of 5/6 nephrectomy [54]. 
Furthermore, miR-758-3p has been studied as potential 
diagnostic biomarker of lupus nephritis in plasma sam-
ples from patients with systemic lupus erythematosus 
[55]. All these studies show that these miRNAs might 
play an important role in CKD and that they are good 
study candidates as CKD biomarkers.

Regarding our results, although the levels of the five 
selected miRNAs are increased in the whole blood of 
mice fed adenine, only miR-542-3p, miR-748-3p, miR-
361-3p, and miR-30c-2-3p correlate with parameters 

Table 2 MiRNAs content in whole blood of wild‑type (WT) and 
ILK conditional‑knockdown (cKD‑ILK) mice

MiRNA expression in whole blood of WT and cKD-ILK mice fed a standard 
(Control) or an adenine rich (Adenine) diet for 6 weeks was measured by 
RT-qPCR and normalized against miR-103a-3p as endogenous control. Results 
are shown as mean ± SEM
* p < 0.05 vs. WT Control
** p < 0.05 vs. cKD-ILK Control
*** p < 0.05 vs. WT Adenine. This experimental design was replicated in three 
cohorts with sample sizes of 7, 10 and 10 animals, respectively. n = 3–11 animals/
group

Groups WT
Control

cKD‑ILK
Control

WT
Adenine

cKD‑ILK
AdeninemiRNAs

miR‑542‑3p 1.0 ± 0.4 1.4 ± 0.9 4.2 ± 1.9* 3.8 ± 2.0*

miR‑758‑3p 1.1 ± 0.7 0.7 ± 0.5 6.5 ± 2.5*,** 3.4 ± 2.5*,**,***

miR‑361‑3p 1.0 ± 0.3 1.1 ± 0.3 3.0 ± 0.6*,** 1.7 ± 0.6*,***

miR‑30c‑1‑3p 1.1 ± 0.4 0.7 ± 0.5 2.7 ± 1.2*,** 1.3 ± 0.8***

miR‑30c‑2‑3p 1.1 ± 0.4 1.0 ± 0.5 4.7 ± 1.8*,** 2.4 ± 0.9*,**
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of renal function, particularly urea nitrogen plasma 
concentration. However, although this correlation 
was statistically significant, the best correlation coef-
ficient obtained was 0.66. In summary, the analysis of 
the circulating levels of the miRNAs that modulate 
ILK expression does not add any value as a biomarker 
to the direct measurement of ILK in circulating mono-
nuclear cells. Interestingly, as shown in Table  2 of the 

Results section, ILK deletion prevented the increased 
expression of miR-758-3p, miR-361-3p, and miR-30c-
1-3p in the whole blood of adenine-fed mice, suggest-
ing that ILK itself could regulate expressions of these 
miRNAs as an autoregulatory mechanism. Yuan D et al. 
described similar results in ovarian cancer by demon-
strating that ILK silencing substantially increased the 
expression of four miRNAs (miR-15a-5p, miR-29c-3p, 
miR-30a-5p, and miR-200a-3p) [56].

Fig. 5 miRNAs content in whole blood of mice correlation with plasma urea nitrogen. Wild‑type and ILK conditional‑knockdown mice were fed 
a standard or an adenine‑rich diet for 6 weeks. Plasma urea nitrogen (mg/dl) measurements were confronted with the values of miR‑542‑3p (a), 
miR‑758‑3p (b), miR‑361‑3p (c), miR‑30c‑1‑3p (d) and miR‑30c‑2‑3p (e) in whole blood of mice. This experimental design was replicated in three 
cohorts with sample sizes of 7, 10, and 10 animals, respectively. n = 3–11 animals/group. The analysis is detailed in the Methods section
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Conclusions
Altogether, our study demonstrates that ILK content in 
circulating mononuclear cells is indeed a rather good bio-
marker of renal and vascular tissue damage in an experi-
mental model of CKD. To provide a clinical utility to this 
finding, additional approaches are needed to confirm it in 
humans and, especially, to assess the potential of ILK as 
a biomarker of CKD progression and/or CKD-associated 
vascular damage. Due to the numerous etiologies of CKD 
and the complex interactions of the multiple pathophysi-
ological processes involved, a panel of biomarkers (and 
not just a single one) including ILK measurement could 
be necessary to improve this predictive ability.
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