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The 3.5 angstrom X-ray structure of the human
connexin26 gap junction channel is unlikely that
of a fully open channel
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Abstract

The permeability of gap junction channels to metabolites, and not simply to small inorganic ions, is likely to play an
important role in development, physiology as well as in etiology of several diseases. Here, we combined dual patch
clamp and fluorescence imaging techniques with molecular dynamics (MD) simulations to investigate the
permeation of calcein, a relatively large fluorescent tracer (MW 622 Da) through homomeric gap junction channels
formed by wild type human connexin26 (hCx26wt) protomers. Our experimental data indicate that the unitary flux
of calcein driven by a 125 uM concentration difference is Jooe = 226 molecule/s per channel. In the light of Eyring
transition state theory adapted for the liquid phase, this value corresponds to an energy barrier of ~20 kgT (where
kg is the Boltzmann constant and T is absolute temperature). The barrier predicted by our MD simulations, based on
the 3.5 A X-ray structural model of the hCx26wt gap junction channel, is ~45 kgT. The main contributions to the
energetics of calcein permeation originated from the interaction between the permeating molecule and the
charged aminoacids lining the channel pore. Assigning a fake zero total charge to the calcein molecule yielded a
value for the barrier height compatible with the experimental data. These results can be accounted for by two
different (although not mutually exclusive) hypotheses: (1) the X—ray model of the hCx26wt gap junction channel is
not representative of a fully open state; (2) post translational modifications affecting the hCx26wt protein in our
expression system differed from the modifications undergone by the proteins in the conditions used to obtain the
crystal structure. Hypothesis (1) is compatible with data indicating that, only 10% or less of the channels forming a
gap junction plaque are in the open state, and therefore the averaging procedure intrinsic in the generation of the
crystal structure data more closely reflects that of a closed channel. Hypothesis (2) is compatible with recent mass
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spectrometry data and implies that the charge of several amino acid side chains may have been altered, thus
modifying substantially the permeation properties of the channels in living cells.
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Background

Gap junction channels mediate communication between
adjacent cells by allowing the passage of a variety of cyto-
plasmic molecules. They are formed by the head-to-head
docking of two connexin protein hexamers, known as he-
michannels or connexons, located in two adjacent cells
[1]. Several studies showed that the permeation of
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cytoplasmic molecules through gap junction channels is
fundamental in development and physiology, but also in
the etiology of several diseases [2]. Second messengers,
amino acids, nucleotides, glucose and its metabolites can
permeate through at least some types of gap junction
channels [3,4]. However, current understanding of the per-
meation properties and mechanisms is largely incomplete.
Indeed, the unitary permeability of homomeric gap junc-
tion channels do not correlate well with ionic conductance
and with presumptive pore sizes. The problem is exacer-
bated by the fact that gap junction channels in living
cells can be formed by different connexin isoforms.
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Furthermore, most of the permeation properties of gap
junction channels can, in principle, be dynamically reg-
ulated in response to external stimuli, such as voltage,
pH or ionic concentrations [3,4].

The structure of connexin proteins and their assemblies
was largely unknown until the publication of a model
based on high resolution (3.5 A) X-ray data of a hCx26wt
channel [5]. The X—ray model permits to tackle issues left
unresolved by previous models based on lower resolution
data [6-9] such as the correct position of transmembrane
helixes and the structure of extracellular regions. It also
enables the study, by use of computational techniques,
of ion permeation pathways [10,11] and the prediction
of unknown structures (wild type human connexin30,
hCx30wt) [11].

With its 226 amino acids, hCx26wt is one of the
smallest member of the connexin family. Mutations of
GJB2, the gene encoding hCx26wt, are implicated in both
syndromic and nonsyndromic deafness [12]. The X-ray
data indicate that hCx26wt comprises four transmem-
brane helixes (TM1, TM2, TM3 and TM4), which are
connected by two extracellular loops (E1, E2) and one
cytoplasm loop (CL) [5]. When assembled in hexamers,
hCx26wt subunits create an aqueous pore in the plasma
membrane, whose walls are formed by TM1 and TM2,
plus the N-terminus (NT) that folds inside the pore at
the cytoplasmic mouth of the channel. The mouth is cre-
ated by the CL and part of the NT and hosts several posi-
tively charged residues. On the extracellular side, instead,
hCx26wt presents an accumulation of negatively charged
residues [5].

Here, we measured the unitary permeability of homomeric
gap junction channels formed by hCx26wt to calcein, a
widely used inorganic fluorescent tracer. We paralleled
the experimental work with MD simulations [11] based
on the 3.5 A X-ray structure of hCx26wt [5]. Term
of comparison between experiments and simulation is
the transition rate of calcein through the channel, i.e.
the number of calcein molecule that are able to traverse
the channel per unit time. Our results indicate that the
3.5 A X-ray structure of hCx26wt is unlikely that of fully
open channel and suggest that permeation properties of the
channel may be significantly affected by post—translational
modification of critical residues lining the pore.

Results and discussion

Experimental determination of calcein transition rate

We obtained an experimental estimate for the unitary flux
of calcein using HeLa cells transiently transfected with
c¢DNA encoding hCx26wt, as previously reported [13].
Calcein was delivered intracellularly, under whole—cell
recording conditions, by passive diffusion out of a patch
pipette filled with 125 pM of this dye. Transfer of calcein
between HeLa cell pairs coupled by homomeric hCx26wt
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channels was monitored by wide—field fluorescence mi-
croscopy followed by direct measurements of cell volume
by digital optical sectioning [14]. Based on the measure-
ment of the unitary permeability p, = (3.0 + 1.0) x 1072
um®/s (mean + standard error of the mean, SEM)
presented in Figure 1, we estimate Jyore = py (€1—C2) =226 =
75 molecules/s per channel to be the unitary flux of calcein
driven by a concentration difference ¢;—c, =125 pM (see
Methods). A possible interpretation of this result is that, on
average, a calcein molecule traverses a hCx26wt channel in
a time Ty, = 1/226 s =4.4 ms. We thus define the experi-
mentally determined transition rate for calcein (with a con-
centration difference of 125 pM) as kgxp = 1/ Texp = 226 s

MD analysis of the permeation process

Direct simulation of permeation of ions or molecules
through a gap junction channel is beyond the current
computational power due to the time scales involved (of
the order of Tg,, i.e. a few ms). For a system as large as
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Figure 1 Estimate of hCx26wt unitary permeability to calcein in
pairs of transfected Hela cells. (A) Average fluorescence traces

(n = 3) obtained by illuminating the field at Ae, =465 nm to observe
calcein spread (emission wavelength Aep, = 520 nm); calcein (125
uM) was delivered to cell 1 under whole—cell recording conditions
(WCT1); ordinates are calcein concentration (see Methods); triangles
correspond to cell 1, dots to cell 2; bars represent standard error of
the mean (SEM). To better appreciate the rise in fluorescence in cell
2, the inset on the right shows a close — up view between WC1 and
the time of achieving the whole-cell configuration in cell 2 (WC2).
(B) The junctional conductance (g) value required to estimate the
single channel permeability p,, to calcein was back extrapolated
from the time course of g; after WC2. (C) The value of p,=3.0+1.0
(mean + SEM) was computed in the interval between times t; and t,

where the signal-to—noise ratio was optimal.
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the one we are examining (with > 2x 10° atoms) this ex-
ceeds by far the time window of state of the art MD sim-
ulations (0.1 to 1 ps). For this reason we used an
indirect method based on the estimate of the free energy
profile for the permeation process [15,16], which can be
approximated by the potential of mean force (PMF) [17]
for calcein permeation through a homomeric hCx26wt
hemichannel (Figure 2A, top panel). Initially, we com-
puted this PMF using the umbrella sampling technique
[18] (see Methods) assuming that all carboxyl groups of
calcein are deprotonated, as expected at neutral pH in
the bulk (i.e. when calcein is well solvated and essentially
isolated within the solvent). At axial coordinate z,; , the
PMF in Figure 2A reaches a peak W_=45.2 kgT (the
subscript ¢ stands for “charged” calcein).

The calcein transition rate k., estimated from the PMF
profile as described in the Methods, is twelve orders of
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Figure 2 MD simulation of the calcein permeation process. (A)
black trace: PMF of permeation through the hCx26wt hemichannel
vs. axial position (z) with the calcein molecule in a fully charged
state; blue trace: hemichannel pore radius green trace: entropic
contribution to the PMF due to translational motion of calcein
within the pore; note that this contribution is not sufficient to justify
the high free energy barrier encountered by calcein (black trace). (B)
Hemichannel section (side view) shown in register with the graphs
of panel A; two connexin protomers are drawn in ribbon style;
colors encode structural domains; a calcein molecule (green) and
two residues that strongly interact with it (Met1, yellow, and Lys41,
blue) are drawn in ball-and—stick style. (C) Views from the
extracellular side of the hemichannel in four different umbrella
sampling simulations.
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magnitude smaller than kg, meaning that no calcein
molecule would ever traverse a homomeric hCx26wt
gap junction channel with the structure predicted by the
35 A X-ray data [5].

To find a rationale for the striking contrast between
experimental results and MD model predictions we ex-
amined various possibilities. First, we noted that the
channel pore narrows in the regions of fastest PMF in-
crease (Figure 2A, middle panel), forcing calcein to
interact with two positively charged residues, namely
Lys41 and Metl (Figure 2B). In our MD model, the lat-
ter has a protonated amino group because of its terminal
position. Snapshots of calcein in four umbrella sampling
windows spanning this critical region are presented in
Figure 2C. A particle moving in a channel with variable
radius experiences a net entropic force due to the vari-
ation of the accessible phase space in the various seg-
ments of the channel. According to Zwanzig theory [19],
this force is equivalent to a potential

Us(z) = —kyT In <:((;)))

where A is the section area of the channel, and z,
a reference position. Function Ug(z) for the hCx26wt
connexon is plotted in Figure 2A (bottom panel). Not
only is the maximum value of Us(z) significantly smaller
than W,, but Us(z) is also qualitatively different from the
PMF profile. Based on this analysis we conclude that the
entropic contribution to the PMF due to the variable
radius of the pore is not the dominant factor and the
channel is not closed from a purely entropic point
of view.

Next we examined the issue of electrical charges. As
noted above, in the course of our umbrella sampling
simulations Metl and Lys41 interacted with the nega-
tively charged calcein molecule (Figure 2B). These inter-
actions are further explored in Figure 3, showing that
calcein carboxyl groups formed salt bridges with the
amino groups of Metl and Lys41. In the wider region
of the narrowing pore, calcein formed bridges with
Metl alone (Figure 3A) or with both Metl and Lys41
(Figure 3B); these bridges then remained stable for the
rest of the dynamics. The region at TM1/E1l border
barely accommodated one calcein molecule with a par-
tial hydration shell. Here calcein interacted only with
Lys41, which protruded into the pore (Figure 3C,D, left).
However, due to the presence of six charged Lys41 side
chains within this narrow region, the salt bridges were
less stable, and tended to be exchanged between differ-
ent protomers (Figure 3C,D, right). A calcein molecule
needs to break and reform salt bridges to move within
this region, and this explains the virtually impenetrable
energy barrier that it encounters.
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Figure 3 Formation of salt bridges in different umbrella sampling windows. Left panels (A—D) show side view representations of the
calcein molecule in the channel pore; residues that interact with it are drawn in ball-and—stick style. Right panels (A—D) show time—course plots
of the distance between one carboxy group of calcein and the amino group of interacting residues. (A) Calcein interacts with a Met1 alone. (B)
Moving along the axis of the pore, calcein is found in a favorable position to interact both with Met1 and with Lys41. (C, D) After breaking the
interaction with Met1, calcein interacts only with Lys41; in this zone, salt bridges are less stable due to calcein interacting simultaneously with
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However, there is evidence that several charged resi-
dues of hCx26wt can be modified by post translational
modifications (Figure 4), which may also depend on cell
condition such metabolic stress [10]. In particular it was
shown that Metl and seven lysines are acetylated (K15,
K102, K103, K105, K108, K112 and K116), whereas three
glutamic acids are gamma-—carboxilated (E42, E47 and
E114) [20]. Due to the difficulties of testing these sites,
which requires building a new channel model for each
candidate (and combinations thereof), we decided to re-
verse the point of view and cancel electrostatic interactions
by eliminating calcein charges. We then performed a sec-
ond set of simulations with calcein in a fully protonated
state (ie. with zero total charge). The results in Figure 5
show a PMF with a greatly reduced peak W, =19.6 kgT
(where the subscript # stands for “uncharged” calcein),
which corresponds to a transition rate k, =352 s (see

Methods), in far better agreement with kg, =226 + 755 .

Conclusions

In this paper we measured the unitary flux of calcein
through hCx26wt gap junction channels, and compared
the experimentally determined value to that predicted by
MD simulations based on the 3.5 A X-ray structural
data [5]. Term of comparison is the unitary transition
rate, i.e. the number of calcein molecules that are able to
transit trough a single channel per unit time. Simula-
tions were performed with two different charge states
for the calcein molecule. In the first case calcein had all
the carboxyl groups deprotonated, as expected at physio-
logical pH. In the other case, calcein was protonated and
set to zero total charge. Our simulations indicate that a
calcein molecule with a presumptive physiological charge
is unable to traverse the channel due to the large energy
barrier it faces (45.2 kzT). In contrast, the predicted transi-
tion rate for a calcein molecule with zero charge is com-
patible with the experimentally determined value.
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and glutamic acids (charge = —1).

Figure 4 Post-translational modifications candidates. Amino acids which are candidates for post translational modifications, according to Ref.
[20], and other charged amino acids are drawn in ball-and—stick style. Green: arginines and methionines that could be acetilated (global charge
=0); magenta: glutamic acids that could be gamma—carboxilated (charge = —2); white: arginines and lysines (charge = +1); black: aspartic acids
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Figure 5 Comparison of PMFs for the permeation of charged
(black) and uncharged calcein (red). The main graphs show PMF
profiles for a hCx26wt hemichannel. Inset: corresponding free
energy profiles, W(z), for a complete gap junction channel obtained
by reflecting the hemichannel PMFs about a vertical axis through
the 7, abscissa.

Based on this analysis we conclude that the structural
model of the hCx26wt channel derived from the 3.5 A X—ray
data [5] is not permeable to calcein (even after MD relax-
ation) and the blockade is essentially electrostatic. Our con-
clusion is in contrast with the proposal of Maeda et al. [5]
that the model represents an open channel. This proposal
was based on the facts that: (i) unlike the M34A mutant
channel structure [21], there are no obvious obstructions
along the pore of the hCx26wt channel; (ii) the crystallization
conditions adopted by Maeda et al. are compatible with the
formation of channels in the open state (neutral pH without
aminosulphonate buffer or any divalent ions). The discrep-
ancy highlighted in the present work can be explained as fol-
lows: (1) there is no way to guarantee that the open channel
structure was preserved during the partial dehydration and
crystallization procedures; (2) in a gap junction plaque, only
10% or less of the channels are in an open state [22-24].

The following considerations lend further support to
this conclusion. Structure relaxation during our MD simu-
lations (carried out in a realistic environment) resulted in
a widening of the pore, particularly at the cytoplasmic
mouth of the channel [11]. Even this wider pore is imper-
meable to charged calcein. Moreover, as mentioned in the
results, the charges of several residues facing the pore may
be altered by post translation modifications, which may
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differ in the mammalian (HeLa) cells used in our experi-
ments with calcein and in the insect cells used by Maeda
et al. in their crystallization study [5]. A recent study
showed that modification of the charge of these residues is
sufficient to recover the correct current-voltage (I-V) rela-
tionship and ionic conductance, with the main role played
by Metl [10]. Among these, Metl, Glu42 and Glu47 are
crucially located in the region of steepest PMF increase.
Our results indicate that charged Metl and Lys41 play a
crucial role in hindering calcein permeation. Note that
Lys41 is not a candidate for acetylation based on Ref. [20].
Furthermore, acetylation of this residue would reduce sig-
nificantly the diameter of the pore at its narrowest point,
thus we consider it unlikely. In this scenario, gamma-—
carboxilation of Glu42 can be a fundamental determinant
of channel permeability. Indeed, the carboxylated side
chain of Glu42 is well poised for interacting with the
amino group of Lys41. This interaction could stabilize the
side chain of Lys41 (which instead appears rather mobile
in our simulations) reducing the electrostatic potential felt
by permeant molecules in the narrowest part of the chan-
nel, altogether favoring their transit. Further simulations
are required to explore the influence of post translation
modifications on the PMF of the channel not only for small
inorganic ions but also for large permeant molecules.

Methods

Experimental methods

Dual whole cell patch-clamp recordings and fluorescence
imaging

A detailed description of the theoretical and experimental
framework for our permeability assays based on double
patch—clamp and fluorescence imaging is provided in the
Supplementary Methods of Ref. [13]. In brief, HeLa cells
were co—transfected with a pcDNA3.1 expression vector
carrying the coding region of hCx26wt and an additional
expression vector carrying a cytosolic CFP to identify
transfected cells. An isolated pair of cells was contacted in
the cell-attach configuration by patch—clamp pipettes
loaded with calcein (Invitrogen, C481) at 125 uM concen-
tration. At time zero, the whole—cell configuration was
established in cell 1 (WC1, Figure 1A), permitting the dif-
fusion of calcein from cell 1 to cell 2 via overexpressed
gap junction channels. The rise of fluorescence in cell 2,
in addition to the estimates of the number N, of open
channels and the volume V; of cell 2, permitted us to de-
rive the single channel permeability value p, as

Vs dC/dt

Npore €1 —C

u =

where ¢, is calcein concentration in cell 1 and ¢y <¢; is
concentration in cell 2. N, was derived by dividing the
total junctional conductance g; back extrapolated between
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WC1 at WC2 (Figure 1B) by the previously determined
single channel conductance y =115 pS [13].

Numerical simulation methods

hCx26wt connexon MD model

The fully atomistic model used for the hCx26wt hemichannel
was developed in our previous work [11]. Briefly, we com-
pleted the published structure [5], adding the atoms that
were missing in the original structure, and then inserting
the initial hCx26 connexon configuration in a hole opened
in a pre-relaxed membrane bilayer of phospholipids
(palmytol posphatidyl choline, POPC). The final mem-
brane configuration comprises 493 phospholipids. The
positive net charge of the hCx26 connexon was neutral-
ized with 54 chloride ions; additional pairs of potassium
and chloride ions were added to mimic a physiological
ionic strength. The system was solvated with a total of
39189 water molecules.

Calcein parametrization

The calcein molecule parameters required by our Molecu-
lar Dynamics simulations are not present in any standard
library. We parameterized it as described below in two dif-
ferent protonation states: (i) standard charge, as reported
by the manufacturer (Invitrogen, C481); (ii) completely
protonated, ie. zero total charge. The initial guess of
calcein coordinates was obtained using the GlycoBioChem
PRODRG?2 server and the JME Molecular Editor provided
on the server [25], from the molecular structure provided
by the manufacturer of the calcein moiety used in the ex-
periments (Invitrogen). After this step we refined the co-
ordinates and obtained the parametrization for GAFF
force field of the two different protonation state of calcein
using the Antechamber package [26].

Evalutation of PMFs by use of the umbrella sampling
technique

The PMF [17] is an approximation of the free energy
changes along one or more reaction coordinates. One of
the most frequently used and effective methods for com-
puting it is the umbrella sampling technique [18,27,28].
The starting model used for the umbrella sampling
simulation of calcein transition through the channel was
taken from our previous work [11]. Initial configurations
for each window of umbrella sampling were extracted
from a steered Molecular Dynamics trajectory of the
calcein transition through a hCx26wt hemichannel. In
this preliminary simulation, the calcein molecule was
dragged through the pore by an elastic force

F(z,t) = —Kpulz — (20 + vt)]

from the cytoplasmic to the extracellular side. Here z, our
chosen reaction coordinate, is position along the pore axis,
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K= 2000 kJ mol™ nm™2 is the stiffness of a harmonic
spring one end of which moved with constant velocity
v =10 nm/ns (pull rate) along z while the center of mass of
the calcein molecule was attached to the opposite spring
end and also restrained to move along the pore axis.

For the actual umbrella sampling simulations, window
centers were initially spaced at 2 A and the whole simu-
lated system underwent a short energy minimization
process for each window. Thereafter we followed the
MD trajectory, whereby the calcein center of mass was
restrained by an elastic force

Fumb,i(z) - _I(umb (Z - Zi)

where K, =1000 k] mol™* nm™2 is the elastic force
constant and z; is the position of the i—th window center
along z axis. The dynamics was initially followed for
1 ns for each window. After obtaining a preliminary
PMEF profile, we refined the spacing to 1 A and extended
the duration of the simulated dynamics in the region
were the PMFs in Figure 5 are rapidly increasing, until
we reached convergence at 3.5 ns (meaning that the
PMF profiles did not change appreciably by lengthening
the simulation). The final total number of windows was
n =41 for both charged and uncharged calcein. Overall,
the simulation time used for evaluating the two PMF
profiles was in excess of 200 ns. All MD simulations
were performed with Gromacs 4.5 software [29] using
the Amber03 force field, in the NTV ensemble [26].
Temperature was kept constant at 300 K using the
Berendsen thermostat [30]. Particle Mesh Ewald summa-
tion [31] was used for the long—range electrostatic inter-
actions, with a cut off of 1.0 nm for the direct
interactions. The simulation time step was comprised
between 1 and 2 fs.

Estimate of transition rate from PMF

We assimilated the permeation process through a complete
gap junction channel to overcoming a free energy profile,
W(z), as described in Ref. [16]. We assumed W(z) to be a
symmetric function obtained by reflecting the hemichannel
PMEF in Figure 2A about a vertical axis through the z;; ab-
scissa corresponding to its extracellular end (see inset of
Figure 5). Since both PMF peaks exceed by far the thermal
energy (Figure 5), the transition rate can be derived by the
liquid phase adaptation of the classical Eyring transition
state theory [15,16,32]. We thus computed the transition
rate, k, as

k = akge W (@) =W (z)l/ksT

where z,; and z, are, respectively, the axial coordinate of
the PMF maximum (in the extracellular vestibule) and
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minimum (in the cytoplasmic mouth of the channel; see
Figure 2A,B). The prefactor kq is given by

» -1
kT [/z eW(z)/kgTdZ:|
2mm |/,

where m is the mass of the calcein molecule. A molecule
that starts from z,; descends down the W(z) profile pushed
by a mean force

ko =

dW (z)
 dz

F =

which favors its exit from the channel in either direction.
This process is several orders of magnitude more probable
than the reverse one, i.e. climbing W(z) in the uphill direc-
tion. For this reason we computed the above integral over
the interval [z, zy;] considering that the rate—limiting step
in the permeation process is determined by reaching co-
ordinate z,, i.e. the apex of the free energy barrier.
The product:

krsr=koe™ (W (zpm) =W (20)]/ks T

is the classical transition state theory rate in liquid phase
[15,16]. It represents the frequency with which the
calcein molecules reaches z,; starting from z.

A molecule that has reached z,; moves forward, towards
the opposite end of the complete channel, with a certain
probability represented by the positive factor a <1, also
known as transmission coefficient. To estimate o we used
a Brownian Dynamics approach in the presence of the ex-
ternal mean force F; namely, we numerically solved the
motion equation:

DAt
Az = F~— + £V2DAt
/(BT

where ¢ is a Gaussian white noise process, with zero mean
and a time correlation function represented by Dirac’s
delta function [33]; D=9.2x10" cm?/s, the diffusion
coefficient of calcein, was taken from Ref. [34] as this fig-
ure is in good agreement with the value we obtained after
a 100 ns MD simulation in the bulk. In this mean—field—
like approximation, the channel was not allowed to fluctu-
ate and it interacted with the calcein molecule only
through £ while thermal fluctuations due to the collision
with water molecules were synthetically taken into ac-
count in the diffusion coefficient and the random forces &,
The time step for the Brownian Dynamics simulation was

Table 1 Summary of computed quantities

W(zy) (kgT) a k(s™)
Charged 452 001 7.7x107"
Uncharged 19.6 0.16 352
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set to 1 ps. This coarse-grained model allowed us to
simulate 10° transitions of a calcein molecule with reason-
able use of CPU time. We then estimated the transmission
coefficient a as the fraction of simulations that yielded a
calcein molecule on the opposite side of the complete gap
junction channel. Table 1 summarize the computed quan-
tities used in this work.

Final note: the estimates of the transition rates repre-
sent the number of transitions (per unit time) that occur
under saturating conditions, i.e. when the wait time be-
tween successive transitions is null. To realize such con-
ditions, the bulk calcein concentration in cell 1 must be
such that (at least) one calcein molecule is present, at
any given time, within the cytoplasmic vestibule of the
channel. To assess whether saturation was achieved
under our experimental conditions (with a calcein con-
centration in the patch pipette equal to 125 pm), we
simulated the diffusion of calcein inside the cell as a
Brownian random walk. The results of this independent
set of simulations indicate that the number of calcein
molecules diffusing from bulk cytoplasm to the vestibule
of an individual hemichannel is 2x10* per second,
suggesting that the zero wait state condition is a reason-
able assumption.
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