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Abstract

subcellular distribution(s).

that halts unlimited transcriptional activation.

binding protein

Background: The Y-box protein-1 (YB-1) fulfills pleiotropic functions relating to gene transcription, mRNA
processing, and translation. It remains elusive how YB-1 shuttling into the nuclear and cytoplasmic compartments is
regulated and whether limited proteolysis by the 20S proteasome releases fragments with distinct function(s) and

Results: To address these questions, mapping of domains responsible for subcellular targeting was performed.
Three nuclear localization signals (NLS) were identified. NLS-1 (aa 149-156) and NLS-2 (aa 185-194) correspond to
residues with unknown function(s), whereas NLS-3 (aa 276-292) matches with a designated multimerization domain.
Nuclear export signal(s) were not identified. Endoproteolytic processing by the 20S proteasome before glycine 220
releases a carboxy-terminal fragment (CTF), which localized to the nucleus, indicating that NLS-3 is operative.
Genotoxic stress induced proteolytic cleavage and nuclear translocation of the CTF. Co-expression of the CTF and
full-length YB-1 resulted in an abrogated transcriptional activation of the MMP-2 promoter, indicating an
autoregulatory inhibitory loop, whereas it fulfilled similar trans-repressive effects on the collagen type | promoter.

Conclusion: Compartmentalization of YB-1 protein derivatives is controlled by distinct NLS, one of which targets a
proteolytic cleavage product to the nucleus. We propose a model for an autoregulatory negative feedback loop
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Background

Cold shock proteins (CSP) are amongst the most con-
served proteins in evolution, sharing a cold shock domain
(CSD) from pro- to eukaryotes [1]. Numerous functions
have been unravelled for members of this protein family.
In bacteria CSPs are co-ordinately up-regulated following
a decrease in temperature to rescue bacterial growth [2].
In eukaryotic cells CSPs are involved in the transcriptional
regulation of genes related to cell proliferation (e.g. DNA
polymerase-a [3], cyclins A and B1 [4], FAS receptor [5]).
Further target genes coordinate matrix synthesis and
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degradation [6], inflammatory responses (e.g. IL-2 [7],
GM-CSF [8]), and antigen presentation (major human
leukocyte antigen [9], ABC transporters [10]).

Y-box protein (YB)-1 is the prototypic member of the
cold shock protein family in humans. YB-1 acts in a cell-
context specific manner on gene transcription, e.g. of
matrix-metalloproteinase (MMP)-2 [11] and granulocyte
macrophage-colony stimulating factor (GM-CSF) genes
[8]. Furthermore, YB-1 has been isolated as a major com-
ponent of messenger ribonucleoprotein particles (mRNPs)
that guide mRNA storage, for instance of GM-CSF [12]
and renin [13], and is involved in translation processes
[14-16]. The specific association of YB-1 with mRNA
evidenced its regulatory role in mRNA processing in
concert with splicing factors, such as SRp30c [17].
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The plethora of functions fulfilled by YB-1 necessitates
subcellular protein shuttling with high stringency. Specific
protein domains, denoted nuclear export signals (NES)
and nuclear localization signals (NLS), may coordinate
such multifunctional shuttling and tasking [18]. Coordi-
nated YB-1 protein shuttling has been characterized with
in vitro cell models. Cell stress exerted by hyperthermia
[19], cytotoxic agents [20], and ultraviolet irradiation [20]
alters a predominant cytoplasmic YB-1 localization in un-
stressed cells to a nuclear preponderance. Cytokines IL-2
[21] and IFN-y [6,22] are also reported to induce a similar
nuclear shuttling. In vivo data have been mostly collected
with cancer tissue. YB-1 has been detected in the cytoplas-
mic and/or nuclear compartments [23,24]. Nuclear YB-1
localization has been described as a negative prognostic
marker for cancers of the breast [25], prostate [26], syno-
via [23,26], and lung [24]. Discussions have focused on the
underlying mechanism(s) for poor cancer prognosis, e.g.
the chemotherapy insensitivity of cells with high levels
of nuclear YB-1 expression may be due to upregulated ex-
pression of multidrug resistance-1 (MDR-1 [10]) and the
ABC transporter MRP2 [27].

Given the aforementioned tightly regulated subcellular
distribution of YB-1 in inflammatory diseases and can-
cer, the present study was initiated to elaborate the
underlying mechanisms that orchestrate YB-1 protein
shuttling. Firstly, differences in subcellular targeting of
fluorescently-tagged YB-1 domains was assessed in vitro
using laser scanning microscopy [4]. Additionally, nu-
clear localization signals (NLS) that target domains of
the protein, e.g. following endoproteolysis, to the nuclear
compartment were fine-mapped. The functional rele-
vance of a predefined carboxy-terminal fragment (CTE),
that readily shuttles to the nuclear compartment, was
unraveled, indicating an auto-inhibitory regulatory loop
in gene transcription.

Results

Subcellular localization of YB-1 deletion constructs

Our starting hypothesis was that YB-1 protein fragments
may be directed to different cellular compartments. Ana-
lyses of the subcellular distribution for full-length and
truncated YB-1-GFP fusion proteins has been described
in HeLa cells [4]. We first confirmed these results in
our model system. Fusion proteins encompassing either
the full-length YB-1 or various deletions, possessing a
C-terminal green fluorescent protein tag, were introduced
into rat mesangial cells (RMC; Figure 1A). Some constructs
encode for proteins with truncations of the C-terminal
domain (denoted basic/acidic (B/A) or charged zipper
domain); depicted in Figure 1A. To preserve comparability
with previous results, we chose to introduce the same ex-
pression constructs used by Jurchott et al. [4]. Of note, the
protein fragments span aa 1-317 of the YB-1 protein
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(accession number J03827)[9] and not of YBX1 (accession
number NM_004559), that has a disparate length of 324
amino acids due to a later annotation of the database.

Cells were grown without cell cycle synchronization in
medium containing 10% FCS, as performed by Jurchott
et al. [4]. For all immunofluorescence analyses, at least
100 transfected RMCs were assessed for their subcellular
fluorescence distribution. Cells were grouped into five
categories: (i.) exclusive nuclear (N), (ii.) exclusive cyto-
plasmic (C), (iii.) a pattern of uneven, predominantly
nuclear (NC) or (iv.) predominantly cytoplasmic (CN) or
(v.) even nuclear/cytoplasmic (NC) distribution. Laser
scanning microscopy detected the full-length YB-1
protein fused to eGFP exclusively in the cytoplasm
(Figure 1B). Transfection of the control eGFP plasmid
resulted in staining of both the nuclear and cytoplasmic
compartments (Figure 1B, second panel). The N-
terminal YB-1 domains (aa 21-147) strictly localized to
the cytoplasmic compartment, whereas the C-terminal
domain aa 146-317 exhibited a nuclear localization
(Figure 1B). Truncations within the YB-1 C-terminal
domain, encoded by constructs P146-225 and P224-317,
revealed that these are targeted to the nucleus, similarly
to the fusion protein encompassing aa 172-225. The
protein fragment P146-172 fused to eGFP was localized
in both compartments. Of note, YB-1-eGFP fusion pro-
tein encoded by a longer construct covering aa 21-262
was exclusively detected in the cytoplasm, indicating
that the nuclear localization signal(s) residing within aa
172-225 are not operative in a more extensive protein
context that includes the N-terminal domains (Figure 1B).
With the exception of the construct encoding for aa
21-262 all YB-1 deletion constructs behaved similarly,
indicating that for the tested model systems there are no
major differences with regard to YB-1 protein targeting.

Fine-mapping of nuclear localization signals

To narrow down the nuclear localization signals within
the YB-1 protein, a computer-based search for known
NLS was performed using the NUCDISC program
(http://psort.nibb.ac.jp; [28]). The search revealed four
hits, all residing within the C-terminal basic/acidic
domain, that are (i.) aa 149-156, (ii.) 185—194, (iii.) 243—
249 and (iv.) 276-292. These motifs were tested in
isolation by fusing them to a DsRed fluorescent tag at
the N-terminus. The subcellular localization was deter-
mined following expression of the respective fluorescent
proteins in RMCs (Figure 2A, B). To readily visualize
the cellular compartments a plasmid encoding for cyan
fluorescent protein (CFP) was co-introduced. CFP is pre-
dominantly detected within the nucleus at 552 - 627 nm.
CFP was chosen as the DsRed tag fluorescence spectrum
overlaps with that of propidium iodine, thus precluding
this method for nuclear counterstaining.
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The residues encompassing aa 149-156, aa 185-194
and aa 276-292 conferred an exclusive nuclear fluores-
cence pattern, whereas the aa 243-249 motif did not
(Figure 2A, B). Since the motif at aa 149-156, denoted
NLS-1, did not localize in the nucleus in the longer pro-
tein fragment encoded by P146-172 (Figure 1A, B), we
therefore focused our attention on the motifs at residues
aa 185-194 (NLS-2) and 276-292 (NLS-3) and evalu-
ated their minimal composition for nuclear shuttling.
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Mutational analyses of the nuclear localization signals
NLS-2 and -3

The NLS-2 at residue aa 185-194 has been described by
Bader and Vogt in chicken YB-1 [29]. As a general rule,
NLS are comprised of at least seven residues with a high
content of basic amino acids [18]. Therefore we generated
five different constructs by introducing mutations to
narrow down the minimal requirement(s) for nuclear
localization and specifically address the question whether
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Figure 1 Localization of YB-1 and deletion constructs of YB-1. A. Schematic overview on GFP-tagged YB-1 (deletion) constructs. B. Localization of
WT YB-1-GFP and YB-1 deletion constructs in proliferating RMC. Cells were transfected with expression vectors encoding for WT YB-1-GFP, YB-1
deletion constructs, or GFP. The subcellular localization was determined by confocal laser scanning microscopy, cell architecture was visualized by
Pl-staining. In the right column a merged overlay of Pl staining and GFP fluorescence is shown. The percentages of cells with GFP-staining only in the
nucleus (N), predominantly in the nucleus and weak in the cytoplasm (No), in both compartments equally (NC), predominantly in the cytoplasm (Cy),
and only in the cytoplasm (C) are provided. 100 transfected cells were assessed for each plasmid.
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Figure 2 Mapping the putative nuclear localization signals (NLS) of YB-1. A. Diagram of DsRed-tagged abbreviated residues corresponding
to putative NLS. The diagram summarizes the four putative NLS and their relative localization within the full-length YB-1 protein. B. Subcellular
localization of putative NLS in RMC. Cells were transfected with expression vectors encoding for DsRed-tagged potential NLS of YB-1 and CFP,
respectively. The subcellular localization was determined using confocal laser scanning microscopy. The cellular morphology was visualized by
co-transfection with CFP, that enriches within the nucleus. The histograms provide quantification of the staining pattern. 100 transfected cells
were assessed for each construct. C. Mutational analyses of the NLS-2 (Py5185) motif. Diagram on DsRed-tagged mutated Py 5185 expression
vectors generated to express the wild-type or mutated sequences (N: nuclear localization). D. Localization of the mutated Py 185 expression
proteins in RMC. Cells were transfected with DsRed-tagged expression vectors encoding for mutated Py 5185 and CFP, respectively. The
histograms provide quantification of the staining pattern. 100 transfected cells were assessed for each construct.
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the tyrosine residue at aa 188 is required for functionality
(Figure 2C). With constructs Pyrg 185 I and Pypg 185 11,
an even cellular distribution of fusion proteins was ob-
served (Figure 2D), indicating that the centrally located ar-
ginines alone are not sufficient for targeting. Exchange of
either an arginine within the N-terminal portion (Pnis
185 1III) or a central arginine (Pnrs 185 IV) with the neu-
tral amino acid glycine had a minimal effect on nuclear

localization, when compared to the wild-type NLS-2
motif. Replacing the tyrosine with phenylalanine at aa 188
(Pnis 185 V) also did not alter the nuclear localization, in-
dicating that the minimal functional requirements of
NLS-2 are independent of tyrosine 188 phosphorylation.
Inspection of the domains at aa 276-292 (NLS-3) re-
vealed a bipartite composition of this motif. Both “arms” of
the motif, PPQRRYRR and RRRRP, exhibit characteristics
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of nuclear localization signals (Figure 3A). These motifs
are separated by an interspersed linker comprised of
four amino acids. Testing of the partite motifs in isola-
tion, encoded by plasmids Pnps276 I and Pyps276 11,
resulted in even cellular distribution of fluorescent pro-
tein. Deletion of the “linker” motif (NFNY; encoded by
plasmid Pyps276 III) or extension of the “linker” by
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introduction of two additional glycine residues (encoded
by plasmid Py 276 IV) did not impair functionality of nu-
clear targeting. Furthermore, we tested whether substitu-
tion of either tyrosine residue affects nuclear localization.
Tyrosines were mutated to phenylalanine in two separate
constructs (Pnps276 V and VI), nevertheless, NLS-3
remained operative (Figure 3A, B).
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Figure 3 Mutational analyses of NLS-3 (Py.s276) and immunoblotting of fractionated cell lysates. A. Diagram of DsRed-tagged mutated
Pnis276 expression vectors generated to express wild-type or mutated amino acid sequences (N: nuclear localization). B. RMC were transfected
with EGF-tagged expression vectors encoding for the mutated Py 5276 sequence. The subcellular localization was assessed by laser scanning
microscopy. The histograms provide quantification of the staining pattern. 100 transfected cells were assessed for each construct. C. Amino acid
sequences of the peptides used for immunization and affinity purification. D. Nuclear YB-1 protein is phosphorylated at NLS-3 in non-

cells. Nuclear and cytoplasmic extracts were isolated from non-differentiated and

cells. Equal protein concentrations were loaded from each fraction. Immunoblotting was performed with the polyclonal
antibodies generated against the unphosphorylated NLS-3 or tyrosine 281 phosphorylated sequence (P-NLS-3). Band intensities were quantified
and normalized for nuclear CREB or cytoplasmic vinculin content. The cytoplasmic fraction has a 10x larger volume than the nuclear fraction.
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Phosphorylation at tyrosine 281 of NLS-3 correlates with
nuclear YB-1 shuttling

The results obtained with the point-mutated NLS-3 motif
(tyrosine exchanges) indicated that phenylalanine residues
had no effect on the NLS-3 functionality in non-
stimulated mesangial cells. Given that such results do not
exclude phosphorylation of the tyrosine residues with
subsequent alteration of functionality, we extended our
analyses. As a model system we chose monocytic THP-1
cells, which express high levels of YB-1 and differentiate
into adhering, amoeboid shaped macrophages following
prolonged incubation with phorbol-12-myristate (PMA;
72 hours [30]). In accordance with previous work, a
marked down-regulation of YB-1 expression was observed
following PMA stimulation. It is known that PMA incuba-
tion affects intracellular signalling cascades and protein
phosphorylation [30]. Western blot analyses were per-
formed with two different polyclonal affinity-purified anti-
bodies, prepared with unphosphorylated (NLS-3) and
phosphorylated (P-NLS-3) peptides (Figure 3C). Phospho-
specific antibody was affinity-purified following capture of
the non-phospho-specific polyclonal immunoglobulins
(flow-through following unphosphorylated peptide col-
umn incubation). This approach yielded highly specific
immunoglobulin preparations suitable to determine the
phosphorylation status, as confirmed in control blots with
isolated peptides (not shown).

Fractionation of THP-1 cell lysates was performed and
the phosphorylation status at NLS-3 assessed. Immuno-
blotting for cytoplasmic and nuclear marker proteins,
vinculin and CREB, respectively, indicated successful frac-
tionation. Undifferentiated THP-1 cells expressed YB-1
protein abundantly, with ~70% of nonphosphorylated YB-
1 protein localizing to the nucleus (Figure 3D). Incubation
of THP-1 cells with PMA resulted in decreased YB-1 pro-
tein expression (-80%) [30]. The YB-1 localization in dif-
ferentiated THP-1 cells remained predominant nuclear
(Figure 3D, left panel).

The same cell lysates were subjected to analyses with the
phospho-specific antibody (Figure 3D, right panel). As a re-
sult, phosphorylation is only detected in the nuclear frac-
tion of YB-1 in undifferentiated THP-1 cells. Cytoplasmic
YB-1 was not detected, suggesting that cytoplasmic YB-1
is non-phosphorylated at NLS-3. In PMA-differentiated
THP-1 cells, phosphorylation at tyrosine 281 was no longer
detected. These results suggest that phosphorylation of
tyrosine 281 in NLS-3 takes place and appears to correlate
with nuclear protein shuttling (see also Additional file 1:
Figure S1 and Additional file 2: Figure S2).

Two putative cytoplasmic retention (CRS)/nuclear export
signals (NES) exist within the YB-1 N-terminal domains
YB-1 protein residues aa 21-147 and aa 21-262 were
fused to eGFP at the C-terminus. The resultant hybrid
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proteins yielded exclusive cytoplasmic fluorescence pat-
terns, indicating the presence of operative CRS or NES
within the domains spanning aa 21-147 (Figure 1B).
Next, four deletion constructs were designed that
encoded for partially overlapping domains within the
N-terminus: aa 1-57, aa 52-101, aa 52—146 and aa 69—
146. The results indicate that only aa 52-101/eGFP
showed an exclusive cytoplasmic localization (summa-
rized in Figure 4A, B).

A computer-aided search for nuclear export signals
(NetNES 1.1 Server, http://www.cbs.dtu.dk; [31]) identified
one potential motif at aa 100-109 (LRSVGDGETYV). Simi-
lar to classical NES, this motif contains three of the four
properly spaced hydrophobic residues and is rich in the
amino acids serine, glutamate, and aspartate. This motif
was tested in isolation, fused to eGFP at the C-terminus,
yielding an even cellular distribution (Figure 4B). Of note,
fluorescent protein encoded by P52-101 was visualized in
a punctuated pattern and pronounced in vicinity to the nu-
clear membranes. An interaction of YB-1 with actin myofi-
brils has been demonstrated by co-immunoprecipitation
studies [32]. By double immunofluorescence staining we
were able to demonstrate co-localization of actin fibers
with ectopically expressed fluorescent P52-101 protein
(Figure 4C).

The carboxy-terminal YB-1 cleavage fragment is targeted
to the nucleus

Sorokin et al. [33] described that YB-1 is endopro-
teolytically processed by the 20S proteasome between
amino acids 119/220. The released N-terminal protein
fragment was found to be transcriptionally active in the
nucleus after thrombin stimulation of endothelial cells
[34], whereas the carboxy-terminal fragment (CTF) has
not been evaluated further. NLS-3 is situated within the
105 aa encompassing the CTF , suggesting that the CTF
may also be targeted to the nucleus. The subcellular
targeting of the CTF was analyzed by means of a construct
encoding the CTF (aa 220-324) fused to eGFP at the
C-terminus. This fluorescent protein was exclusively local-
ized in the nucleus, with a pronounced speckled pattern
(Figure 4D). We next asked whether over-expression of
CTF affects the subcellular localization of full-length YB-1
protein, given that it may act as a decoy protein for the
dimerization motif. The cellular content of untagged CTF
was increased by means of expression vector pSG5(CTF).
The co-introduced fluorescent full-length YB-1 protein
was detected by laser scanning microscopy. In a reciprocal
approach, full-length YB-1 protein levels were increased
using the expression vector pSG5(YB-1) and the CTF
fluorescent protein detected. Under both conditions the
described compartmentalization of the proteins remained
unaltered (Figure 4E).
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Figure 4 Mapping of the potential nuclear export signals (NES) of YB-1 and subcellular localization of the carboxy-terminal YB-1

protein fragment (CTF). A. Diagram on putative NES within the YB-1 protein. The composition of generated NES-constructs, denoted P1-57,
P52-101, P52-146, and P69-146 with GFP-tags is provided. B. Localization of the tested constructs, denoted P69-146, P52-146, and P100-109,
with GFP-tags in RMCs. The histograms provide quantification of the staining pattern. 100 transfected cells were assessed for each construct.

C. Co-localization of P52-101 and a-smooth muscle actin in RMC. Cells were transfected with P52-101 (GFP-tagged) and after fixation, immuno-
stained for a-smooth muscle actin (TRITC labelling). In the right column (GFP + TRITC) an overlay of TRITC and GFP staining is presented. D. Rat
mesangial cells were transfected with an expression vector encoding for GFP-tagged CTF of YB-1 (pCTF). The subcellular localization was assessed
using confocal laser scanning microscopy. The histogram provides quantification of the staining pattern. 100 transfected cells were counted.

E. Localization of WT YB-1-GFP and CTF in co-transfected RMC. Cells were transfected with an expression vector encoding for WT YB-1-GFP

and pSG-5(CTF), encoding for the untagged CTF. Furthermore, RMC were transfected with pCTF (GFP-tagged CTF) and the expression vector
pSG5(YB-1) encoding for untagged YB-1. The subcellular localization was determined using confocal laser scanning microscopy. The histograms

provide quantification of the staining pattern for 100 transfected cells.

YB-1 proteolysis and subcellular targeting of domains
following genotoxic stress

The nuclear shuttling of YB-1 has been described under
conditions of cellular stress. To address the question,
whether proteolytic processing of YB-1 and nuclear
shuttling of the resulting protein fragments takes place
cytotoxic stress experiments were designed. Doxorubi-
cin, a common drug used to treat cancers of the bladder,
breast, lung, or ovary, was added to the culture medium
of MCEF-7 breast cancer and rat mesangial cells in the
absence and presence of the proteasome inhibitor MG-

132. The subcellular distribution of endogenous YB-1
protein was assessed using affinity-purified polyclonal
antibodies targeting epitopes within the protein N- and
C-terminus (Figure 5A). Immunofluorescence micros-
copy revealed that antibody preparations were specific
for YB-1, (Additional file 3: Figure S3). In unchallenged
cells, the C-terminal antibody detected YB-1 predomin-
antly within the cytoplasm. A concentration-dependent
shift to the nucleus was visualized following doxorubicin
incubation (DOXO, 0.6 and 1.2 pg/ml; Figure 5B).
In order to assess whether cleavage of YB-1 is a
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Figure 5 (See legend on next page.)
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(See figure on previous page.)

Figure 5 Subcellular localization of YB-1 protein fragments following genotoxic stress in the absence and presence of proteasome
inhibitor. A. Schematic of YB-1 protein with its centrally localized cold shock domain. Polyclonal peptide-derived affinity-purified antibodies were
generated against two epitopes localized either in the N- or C-terminus. B. Distribution of endogenous YB-1 protein was assessed by
immunofluorescence microscopy in rat mesangial cells following immunodetection with the anti-YB-1 antiserum directed against the C-terminus
(primary antibody). Murine anti-vinculin was used to visualize the cell structure. Fluorescently labelled secondary antibodies anti-rabbit IgG(Fab)-
Cy3 and anti-mouse IgG(Fab)-FITC were used for detection. Nuclei were visualized by DAPI staining. Rat mesangial cells were incubated for 16 h

with doxorubicin at increasing concentrations (0.6 and 1.2 ug/ml) in the absence or presence of proteasome inhibitor MG-132 (10 pmol/I).
Images were taken at x63 magnification. C. Distribution of endogenous YB-1 protein was assessed by immunofluorescence microscopy in rat
mesangial cells according to the protocol outlined in A with polyclonal YB-1 antiserum directed against the N-terminus (N-Term, primary
antibody). D. Immunoblotting of fractionated cell lysates from rat mesangial cells exposed to doxorubicin at increasing concentrations (0.6, 1.2,
and 2.4 ug/ml). Cytoplasmic and nuclear proteins were separated and purity ascertained by detection of vinculin and CREB.

prerequisite for nuclear translocation, proteasome inhibi-
tor MG-132 (10 pM) was added to the cell culture
medium and the cells challenged with doxorubicin. In
cells preincubated with MG-132, most YB-1 protein
remained cytoplasmic with only a minor fraction shuttling
to the nucleus (Figure 5B). From this observation it may
be concluded that proteasomal cleavage appears to be a
prerequisite for nuclear translocation; although additional
“activation” mechanisms may be operative. Next, the
antibody specific for an epitope within the protein
N-terminus was utilized. In unchallenged cells, the
N-terminal antibody detected YB-1 predominantly within
the cytoplasm, similar to the results obtained with the
C-terminal antibody. However, following genotoxic stress
(Figure 5C), some YB-1 protein was still detected peri-
nuclear. Preincubation with MG-132 vyielded a predo-
minantly cytoplasmic fluorescence pattern. The results
suggest that cell stress-dependent protein cleavage is
followed by nuclear shuttling of the protein C-terminal
domain. To confirm that such a cleavage event occurs,
cell fractionation was performed with rat mesangial cells
exposed to increasing concentrations of doxorubicin (0.6,
1.2, and 2.4 pg/ml), followed by immunoblotting with the
aforementioned antibodies (Figure 5D and Additional file
2: Figure S2). As a result, a concentration-dependent nu-
clear accumulation of full-length YB-1 was detected with
both antibodies. In addition, a protein fragment with a
relative molecular weight ~28 kDa was detected following
doxorubicin exposure. This fragment is found exclusively
in the nuclear fractions using the antibody recognizing
the C-terminal epitope and is phosphorylated at NLS-3
(Additional file 2: Figure S2). Similar results were ob-
tained using MCEF-7 breast cancer cells (Additional file 4:
Figure S4A/B). Again, a concentration-dependent shift of
YB-1 to the nuclear compartment was visualized fol-
lowing doxorubicin incubation, a proteasome-dependent
cleavage was evidenced by the same subcellular alter-
ations as described for rat mesangial cells. Cell viability
was assessed by trypan blue exclusion in control experi-
ments with increasing concentrations of doxorubicin

(Additional file 4: Figure S4C).

The CTF influences the transcriptional activity of full-
length YB-1

In the following, we tested whether ectopically expressed
CTF interferes with gene transcription orchestrated by
overexpressed full-length YB-1, e.g. target gene MMP-2.
Rat mesangial cells were transfected with the reporter
construct pGL2MMP-2/RE-1 that harbours a YB-1 re-
sponsive enhancer element derived from the rat MMP-2
promoter [35,36]. The experimental set-up included co-
transfections with empty expression vector pSG5, pSG5
(YB-1), pSG5(CTF), or the combination of the latter. As
described before, full-length YB-1 overexpression en-
hanced the transcriptional activity of the MMP-2 pro-
moter more than 100-fold under the chosen conditions
([11], Figure 6A). A similar induction of gene transcrip-
tion was observed with ectopically expressed CTF, ran-
ging between 100- and 200-fold even at low doses of
plasmid DNA. When both expression plasmids, encod-
ing full-length YB-1 or CTE, were co-transfected, the
transcriptional activity was markedly repressed. Quanti-
fication revealed luciferase values at background levels
(Figure 6A). The abrogation of full-length YB-1 tran-
scriptional activity was determined with increasing con-
centrations of CTF expression plasmid. Thus, the CTF
may functionally interfere with the trans-stimulatory ef-
fect of full-length YB-1 on target gene expression,
whereas the CTF alone is capable of trams-activating
gene transcription to a comparable extent as full-length
YB-1 protein.

A trans-repressive effect of YB-1 on gene transcription,
e.g. of the collal promoter, has also been described [37].
We next wished to evaluate whether the CTF alone may
fulfill such a repressive effect. Rat mesangial cells were
transfected with the well characterized promoter reporter
construct pGLal-2.3 [37]. Ectopic overexpression of full-
length YB-1 led to a suppression of transcriptional pro-
moter activity by more than 90%. Ectopic overexpression
of CTF alone resulted in a similar reduction of promoter
activity by ~70% (Figure 6B). Co-expression of both, full-
length YB-1 protein and CTE did not interfere with the
repressive effect.
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Figure 6 The carboxy-terminal YB-1 protein fragment (CTF) regulates transcriptional activity. A. Transcriptional activity of CTF on the

MMP2 promotor construct pGL2MMP-2/RE-1. Rat mesangial cells were transfected with equal amounts of DNA (as indicated). After 48 hours cell
lysates were prepared and luciferase assays were performed. All experiments were performed in triplicates and confirmed in three independent
experiments. B. Transcriptional activity of the CTF on the Collal promotor construct pGLal-2.3. Rat mesangial cells were transfected with the
indicated expression vectors and incubated for 48 hours. Luciferase assays were performed thereafter using cell lysates. All experiments were

performed in triplicates and confirmed in three independent experiments.

Discussion

Our first quest was to determine the subcellular
localization of full-length YB-1 protein as well as a
series of truncated protein fragments (Figure 1). We
confirmed in resting cells that full length YB-1 is pri-
marily cytoplasmic. Construct encoding aa 21 to 262
yielded an equal fluorescent signal in the cytoplasm and
nucleus, whereas it was exclusively cytoplasmic the pre-
vious study [4]. For the other constructs, no differences
regarding subcellular targeting of YB-1 protein was
detected in vitro.

Next we mapped the functional motifs and sub-
domains within the YB-1 protein that either confer
nuclear shuttling/retention or cytoplasmic localization/
retention. Analogous to the report by Bader et al. [29]
we detected functionality of the NLS at aa 185-194 (re-
ferred to here as NLS-2) in rat cells. In addition, two
novel nuclear localization motifs located at aa 149-155
(NLS-1) and aa 276-292 (NLS-3) were mapped. Inspec-
tion of motif NLS-3 immediately suggested a bipartite
composition. Mutational analyses confirmed that both
parts are indeed required for functionality, at the same
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time alterations of the spatial organization of the two
halves did not impair nuclear shuttling of a fluorescent fu-
sion protein. Both NLS sequence motifs (NLS-2 and -3)
contain tyrosine residues that are potential sites for phos-
phorylation, e.g. to regulate functionality of the NLS. To
determine whether phosphorylation take place, we gener-
ated polyclonal peptide-based antibodies against the non-
phosphorylated NLS-3 domain and the same antigen
phosphorylated at tyrosine 281. The results indicate that
most of the YB-1 protein phosphorylated at tyrosine 281
within NLS-3 appears to be in the nucleus, whereas the
cytoplasmic YB-1 protein appears unphosphorylated at
this residue (Figure 3 and Additional file 2: Figure S2).
These results indicate that phosphorylation at tyrosine
281 is accompanied by nearly exclusive nuclear loca-
lization of full-length YB-1, suggesting that the phosphory-
lated NLS-3 may act dominantly on the subcellular
localization of Y-box protein. However, the data also show
that this phosphorylation is not essential for nuclear
localization. In addition, the data suggest that the loca-
lization of YB-1 may be highly regulated after cell stimula-
tion. Stenina et al. [34] and Sorokin et al. [33] observed
a nuclear localization of the truncated YB-1 protein
containing N-terminal portions of the protein in stimu-
lated cells. For the amino-terminal domains of YB-1, a
strict cytoplasmic localization was observed when the
expressed YB-1 deletion/GFP-fusion proteins harbour aa
52-101. In an attempt to define nuclear export signal-
containing domains further constructs were designed that
mapped to diverse regions of the protein N-terminus (see
Figure 6). However all of these “truncated” constructs lost
their subcellular specification.

In summary, we could identify 3 different NLS, but no
NES within the YB-1 protein. The existence of three differ-
ent NLS within a protein underscores a careful regulation
of its subcellular localization. The localization of phos-
phorylated NLS-3 within the nucleus of unstimulated cells
raises many questions regarding its regulation. However,
further scrutiny of the other NLSs shows that they also
contain tyrosine residues, several for which the phosphor-
ylation has already been reported (PhosphoSitePlus).
Thus, the regulation of tyrosine phosphorylation and its
role in the nuclear localization of YB-1 is an area that re-
quires further study. Previous reports by Bader et al. have
identified aa 137-183 in participating as a multimerization
domain of chicken YB-1 [29]. YB-1 multimerized in the
presence and absence of DNA and RNA templates [38].
Therefore, it is possible that in the aggregates of
multimerized YB-1, the region harboring the NLS-1 is
hidden and thus no longer accessible to proteins involved
in nuclear import.

Information on the subcellular localization of YB-1
protein in healthy tissue or in inflammatory diseases is
scarce. In healthy kidney tissue, YB-1 was almost
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exclusively detected in the nucleus of glomerular and
tubulointerstitial resident cells [39]. Following the induc-
tion of mesangioproliferative disease, a temporally and
spatially coordinated up-regulation of YB-1 was detected
in the cytoplasm of mesangial cells [39]. Such a tight
regulation of the subcellular protein specification is one
aspect that must be fulfilled to explain its involvement
in pleiotropic functions, ranging from gene transcription
to pre-mRNA splicing, mRNA translation, secretion, and
receptor interaction [40,41].

In the studies by Sorokin et al. [33] the focus was
placed on the N-terminal fragment. Somewhat sur-
prisingly, we did not detect this fragment with our
N-terminal antibody after stress induction (Figure 5D),
however we clearly detect the CTF, which may suggest a
differential processing of YB-1 that is signal-dependent.
Our inability to detect the N-terminal fragment of YB-1
suggests that it is either post-translational modified,
thus masking the epitope, or degraded. While there are
no reported phosphorylation sites within the epitope (aa
10-22), there are multiple lysine residues that are sites
of ubiquitinylation (PhosphoSitePlus [42]). Addition-
ally, YB-1 associates via its N-terminus with FBX33, a
component of an SCF E3-ubiquitin ligase; an inter-
action that targets YB-1 for proteasomal degradation
[43]. However, the issue of whether proteolytic process-
ing of YB-1 occurs is still disputed [44,45].

We extended the functional analyses by creating an ex-
pression plasmid encoding for the CTF only. The effect of
ectopically expressed CTF on gene transcription from en-
hancer and silencer elements, respectively, of YB-1 target
genes MMP-2 and collagen type I [11,37] were analyzed.
In rat mesangial cells ectopic overexpression of the CTF
resulted in increased transcriptional activity of the MMP-
2 response element-1, as was shown before for full-length
YB-1 (Figure 6). Notably, co-expression of CTF and full-
length YB-1 resulted in a loss of transcriptional trans-
activation of the same element. Thus, the carboxy-
terminal YB-1 protein fragment aa 220-324, lacking the
described DNA- or RNA-binding cold shock domain [46],
acts dominant-negatively on full-length YB-1-dependent
gene transcription. The CTE, which is composed of basic/
acidic repeats, is generally thought to mediate protein-
protein interactions [1]. However, the B/A motifs from the
C-terminus of Y-box proteins have also been shown to
have nucleic acid-binding activity [46,47]. Thus, a DNA
binding mechanism would be an obvious explanation,
however other possibilities could be envisioned (e.g. a
decoy function that influences protein-protein interactions
to promote or inhibit complex formation or YB-1
oligomerization). Further investigations will be required to
elucidate this mechanism of action.

A hypothetical model for the functionality of the CTF
was set up, emphasizing the need for cooperative protein
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interactions to direct gene transcription and also the
novel regulatory ramifications with the CTF acting on
gene transcription. In normal, unstressed cells full-
length YB-1 is primarily cytoplasmatic (Figure 7). In the
case of genotoxic stress, a subset of the full-length YB-1
protein is cleaved by the 20S proteasome. Both the full-
length protein and the cleavage products localize to the
nucleus, resulting in a loss of transcriptional activity at
the MMP-2 promoter. This effect may be dependent on
the half lives of the distinct protein fragments (Figure 7).
It will be of interest to see whether other functions of
YB-1, such as mRNA binding and translation processes,
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are also regulated by the CTF. Of note there was a
trans-repressive effect of the CTF on the collagen type I
promoter element, that was not subjected to interference
with wild-type protein activities. Thus it appears that the
activating and repressive activities of YB-1 on gene tran-
scription may involve mechanisms that reflect a require-
ment for different levels of YB-1 oligomerization and/or
perhaps different binding partners.

Conclusions
The full spectrum of signals that induce either the phos-
phorylation and/or proteolytic processing of YB-1 still

~

no stress

genotoxic stress

\ nucleus

experimental
manipulation
with increased
CTF expression

cytosol/

Figure 7 Model of the functional activities for the C-terminal fragment (CTF) of YB-1. In non-stressed cells full-length YB-1 protein is
predominantly cytoplasmic and may shuttle between the nucleus and cytoplasm. In the nucleus, full-length YB-1 binds to the RE-1 element
within the MMP-2 promotor and trans-activates gene transcription. Following genotoxic stress, full-length YB-1 is predominantly localized in the
nuclear compartment. In addition, cleavage of full-length YB-1 protein by the 20S proteasome takes place; whether this occurs in the cytoplasm
or nucleus has not been investigated. The cleaved C-terminal fragment (CTF) also resides within the nuclear compartment. Co-localization of
full-length YB-1 and CTF in the nuclear compartment results in loss of transcriptional trans-regulation of the MMP-2 promoter. The MMP-2
promoter is transcriptionally activated by ectopically expressing CTF, that readily shuttles to the nucleus.




van Roeyen et al. Cell Communication and Signaling 2013, 11:63
http://www.biosignaling.com/content/11/1/63

remains to be determined. It is interesting to speculate
to what extent these processes may contribute to path-
ology, particularly as enhanced levels of nuclear YB-1
are often associated with a poor prognosis in cancer
[45,48,49]. Proteasome inhibitors have been introduced
into therapeutical regimens of hematological disorders
like multipe myeloma. Of note, experimental evidence
indicates that proteasomal inhibitors like bortezomib
may exert profound antiinflammatory activities in kidney
diseases, like lupus nephritis [50] and necrotizing glom-
erulonephritis [51]. Future studies will address the im-
portant question of whether the prevention of YB-1
cleavage via proteasomal inhibition contributes to these
anti-inflammatory activities.

Methods

Cell culture

Rat mesangial cells were established as previously de-
scribed [52,53]. Human monocytic THP-1 as well as hu-
man breast adenocarcinoma MCEF-7 (Michigan Cancer
Foundation-7) cells were obtained from the ATCC.
RMCs and THP-1 cells were grown in RPMI 1640
medium supplemented with 10% fetal calf serum,
2 mM L-glutamin, 100 pg/ml of streptomycin and 100
U/ml penicillin at 37°C in humidified 5% CO,. MCF-7
cells were grown in DMEM medium supplemented as
described above.

Plasmids

Plasmids encoding for the WT YB-1 fusion protein and
the GFP-tagged deletion constructs were obtained from
K. Jarchott (Max-Delbriick Center, Berlin, Germany).
For characterization of the NLS and NES, DNA frag-
ments of the YB-1 sequence (gene AC J03827) were
cloned into the vector pDsRed2-C1 or pEGFP-N1 (BD
Biosciences Clontech, Heidelberg, Germany). The fusion
proteins were tagged with DsRed2 at the N-terminus or
EGEFP at the C-terminus, respectively. Inserts were gen-
erated by PCR using the full-length WT YB-1 vector as
template and primers as described in Additional file 5:
Table S1, and digested with EcoRI/BamHI or Bglll/
EcoRIL For the generation of the small deletion con-
structs and mutational analyses annealed oligonucleo-
tides (Invitrogen, Karlsruhe, Germany), as described in
Additional file 6: Tables S2 and Additional file 7: Table
S3, were ligated into pDsRed2-C1 or pEGFP-N1 vectors,
respectively. All nucleotide sequences were verified by
automated sequencing.

Transient transfection and laser scanning microscopy

RMC were grown to 60-80% confluency on coverslips in
6-well culture plates and transiently transfected with
Fugene® 6 according to the manufacturers instructions
(Roche, Basel, Switzerland). Briefly, 2 pg plasmid DNA
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and 6 pl Fugene solution were gently mixed in 80 pl
serum-free RPMI 1640 medium and incubated for
1 hour. RMC transfected with pDSRed2 derived vectors
(1 pg) were cotransfected with 1 pg of pCFP vector (BD
Biosciences Clontech, Heidelberg, Germany). The trans-
fected cells were washed twice with PBS and then fixed
with 4% paraformaldehyde/PBS for 30 minutes. In trans-
fection studies with GFP-tagged vectors, nuclear staining
was achieved by adding propidium iodine in a con-
centration of 5 pg/ml for 10 min at room temperature.
Cells were mounted with immuno-mount (Shandon,
Pittsburgh, USA) and analyzed by laser scanning micros-
copy (Axiovert 100 M confocal laser scanning micro-
scope, Carl Zeiss, Oberkochen, Germany), using a dual
parameter setup and dual wave-length excitation at
488 nm and 543 nm for detection of GFP/PI fluores-
cence or 458 nm and 543 nm for DsRed/CFP fluores-
cence. All transfection experiments were performed at
least three times.

Luciferase assays

For luciferase activity measurements, RMC were trans-
fected with pSG5, pSG5(YB-1), and/or pSG5(CTF) ex-
pression vectors together with the promoter constructs
pGL2MMP-2/RE-1 in 6 or 12 well plates and incubated
for 48 hours. After 48 hours, cells were harvested in
100 pl reporter lysis buffer and luciferase assays were
performed with 20 pl of lysates using the Luciferase assay
system (Promega, Madison, WI, USA). All assays were
performed in triplicate.

THP-1 differentiation

THP-1 cells were differentiated into adherent macrophage-
like cells by incubation with phorbol-12-myristate
for 72 hours (PMA, 100 nM; Sigma-Aldrich, Seelze,
Germany). Nuclear and cytoplasmic cell extracts were pre-
pared as previously described [11]. Protein concentrations
were determined sing the Bio-Rad protein assay and bo-
vine serum albumin as a standard. Proteins were subjected
to SDS-PAGE, transferred to nitrocellulose, and detected
with suitable polyclonal antibodies to NLS-3, or P-NLS-3
(Eurogentech, Koln, Germany), vinculin, or CREB. Protein
bands were visualized using ECL (Amersham Biosciences,
Piscataway, NJ, USA). Band intensities were quantified
using the Scion Image software. The YB-1 protein content
in cells without PMA-treatment was set to one.

Antibodies

Two peptide-derived rabbit polyclonal anti-YB-1 sera,
recognizing epitopes aa 21-37 and 306-321 of YB-1,
were generated as previously described [39,40,54,55].
Sera were used at a dilution of 1:100 for immunofluores-
cence (IF)and 1:1000 for Western blotting (WB). A
monoclonal antibody against Vinculin was purchased



van Roeyen et al. Cell Communication and Signaling 2013, 11:63
http://www.biosignaling.com/content/11/1/63

from (Fitzgerald Industries, Acton, Massachusetts, USA)
and used at 1:100 for IF and 1:1000 for WB. A monoclonal
antibody against CREB was purchased from (Cell
Signaling, Danvers, MA, USA) and used at 1:1000 for WB.
Horse radish peroxidise-linked anti-rabbit and -mouse anti-
bodies (SouthernBiotech, Birmingham, Alabama , USA) for
WB (dilutions 1:5000 to 1:10,000). Cy3-labeled anti-rabbit
antibody (Sigma-Aldrich, Seelze, Germany) and FITC-
labeled anti-mouse antibody (Dako Deutschland GmbH,
Hamburg, Germany) were used for IF.

Cell viability
A trypan blue (Sigma-Aldrich, Seelze, Germany) exclu-
sion assay was performed as described [52].

Cytoplasm and nuclear fractionation

RMC and MCEF-7 cells were washed twice with PBS and
lysed in Nuclear Extraction Buffer A (10 mM Hepes,
10 mM KCl, 0.1 mM EDTA) containing complete prote-
ase inhibitor cocktail (Roche, Basel, Switzerland) at 4°C
for 15 min and centrifuged at 15,000 x g for 3 min at
4°C. Supernatants containing cytoplasmic proteins were
collected. Pellets resuspended in Nuclear Extraction Buf-
fer A and centrifuged at 15,000 x g for 3 min at 4°C. Su-
pernatants were decanted. Steps were repeated two
more times. Pellets resuspended in Nuclear Extraction
Buffer B (20 mM Hepes, 0.4 M NaCl, 1 mM EDTA, 10%
Glycerol) containing complete protease inhibitor cocktail
(Roche) at 4°C for 20 min and centrifuged at 25,000 x g
for 5 min at 4°C. Supernatants containing nuclear pro-
teins were collected and protein concentrations of the
different fractions determined by BioRad protein assay
(BioRad, Munich, Germany) with BSA as a standard.

Western blotting

Denatured protein samples were separated by electro-
phoresis in 10% SDS-PAGE, transferred onto nitrocellu-
lose membranes, blocked with 5% milk in PBS-tween
(PBST), washed with PBST, and incubated with primary
antibodies (described above) diluted in PBST overnight
at 4°C. Primary antibodies were detected using HRP-
conjugated secondary antibodies (described above) di-
luted in PBST for two hours at room temperature.

Immunofluorescence microscopy

MCEF-7 and RMC cells were grown on glass coverslips.
Twenty-four hours later, the cells were treated with dif-
ferent concentration of doxorubicin for fourteen hours.
After incubation with doxorubicin, the cells were
washed twice with PBS to remove non-adherent cells
and fixed with 4% paraformaldehyde in PBS. Two differ-
ent peptide-derived rabbit polyclonal anti-YB-1 anti-
bodies and mouse anti-viniculin were used (1:100).
Secondary antibodies Cy3-labeled anti-rabbit (Sigma-
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Aldrich, Seelze, Germany), and FITC-labeled anti-
mouse (Dako Deutschland GmbH, Hamburg, Deutschland)
were diluted 1:300 . Nuclei were counterstained with DAPI
(Invitrogen, Karlsruhe, Germany). Cells were mounted
with fluorescence mounting medium (Dako Deutschland
GmbH, Hamburg, Germany) and analyzed using a fluores-
cence microscope (DM6000 B; Leica Microsystems GmbH,
Darmstadt, Germany) equipped with a CCD Camera
(DFC340 FX; Leica Microsystems GmbH, Darmstadt,
Germany) and a 63/1.4 objective. Separate images were
taken and later merged using Image]™ software.

Additional files

Additional file 1: Figure S1. Antibody specificity testing with and
without calf intestinal alkaline phosphatase treatment. Rat mesangial cells
were left untreated (-) or treated (+) with the protein tyrosine
phosphatase inhibitor pervanadate (PV) to maximize phosphorylation.
Cell lysates were loaded in duplicate, separated by SDS-PAGE, and
transferred onto membranes. The membrane was cut and blocked. In
addition, one membrane was incubated in alkaline phosphate buffer with
1U calf intestinal alkaline phosphatase (CIP)/ pg protein for 60 minutes
(+CIP). The membranes were the incubated with primary antibody as
indicated and visualized using ECL detection. As seen, CIP treatment
completely ablates the signal detected using the pNLS3 antibody
demonstrating its phospho-specificity. The pan-phosphotyrosine antibody
[4G10] shows that not all tyrosine phosphorylation has been removed.
The YB-1 and B-tubulin signals are comparable. The position of the
protein standards and the relative molecular weight (MW) in kiloDaltons
(kDa) are indicated.

Additional file 2: Figure S2. Subcellular localization of YB-1 protein
fragments following genotoxic stress. Immunoblotting of fractionated cell
lysates from rat mesangial cells exposed to doxorubicin for 14 h at
increasing concentrations (0.6, 1.2, and 2.4 pg/ml). Cytoplasmic and
nuclear proteins were separated and purity ascertained by detection of
vinculin and CREB. Additionally, blotting with the pNLS3 antibody shows
that the phosphorylated C-terminal fragment (p28) is found exclusively in
the nuclear fraction.

Additional file 3: Figure S3. Antibody specificity testing with
preincubation of immunization peptides in MCF-7 cells. Distribution of
endogenous YB-1 protein was assessed by immunofluorescence
microscopy in MCF-7 cells with a peptide-derived affinity purified
polyclonal YB-1 antiserum directed against the N-terminus (primary
antibody). Upper left panel: untreated N-terminal antibody. Upper middle
panel: antibody mixed with 0.1 ug/ml of immunizing peptide (YB-1
amino acids 21 to 37: SAADTKPGTTGSGAGSG). Upper right panel:
antibody mixed with with 1 ug/ml of immunizing peptide. Middle
panels: Murine anti-vinculin antibody was utilized to visualize the cell
structure. Lower panels: Nuclei were visualized with DAPI. Images were
taken at x63 magnification.

Additional file 4: Figure S4. Subcellular localization of YB-1 protein
fragments following genotoxic stress in the absence and presence of
proteasomal inhibitor in MCF-7 breast cancer cells. 1 2. A. Distribution of
endogenous YB-1 protein was assessed by immunofluorescence
microscopy in MCF-7 cells following immunodetection with the anti-YB-1
antiserum directed against the C-terminus (primary antibody). Murine
anti-vinculin antibody was utilized to visualize cell structures.
Fluorescence labelled secondary antibodies consisted of anti-rabbit 1gG
(Fab)-Cy3 and anti-mouse IgG(Fab)-FITC. Nuclei were visualized by DAPI
staining. MCF-7 cells were incubated for 16 h with doxorubicin at
increasing concentrations (0.6 and 1.2 pg/ml) in the absence or presence
of proteasome inhibitor MG-132 (7.5 and 10 umol/l). Images were taken
at x63 magnification. B. Distribution of endogenous YB-1 protein was
assessed by immunofluorescence microscopy in MCF-7 cells according to
the protocol outlined in A with polyclonal YB-1 antiserum directed
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against the N-terminus (N-Term, primary antibody). C. Cytotoxicity assay
with increasing concentrations of doxorubicin. Rat mesangial cells

(1 x 106/well) were seeded in 24-well plates in RPMI medium (with

10% FCS) followed by treatment with the indicated concentrations of
doxorubicin for 16 h. Cell viability was then measured using Trypan blue
reagent.

Additional file 5: Table S1. Primers used for the cloning of deletion
constructs.

Additional file 6: Table S2. Primers used for the cloning of small
deletion constructs.

Additional file 7: Table S3. Primers used for the cloning of mutational
analyses constructs.
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