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Abstract

Background: Many diseases and pathological conditions are characterized by transient or constitutive
overproduction of reactive oxygen species (ROS). ROS are causal for ischemia/reperfusion (IR)-associated tissue
injury (IRI), a major contributor to organ dysfunction or failure. Preventing IRl with antioxidants failed in the clinic,
most likely due to the difficulty to timely and efficiently target them to the site of ROS production and action. IR is
also characterized by changes in the activity of intracellular signaling molecules including the stress kinase
p38MAPK. While ROS can cause the activation of p38MAPK, we recently obtained in vitro evidence that p38MAPK
activation is responsible for elevated mitochondrial ROS levels, thus suggesting a role for p38MAPK upstream of
ROS and their damaging effects.

Results: Here we identified p38MAPKa as the predominantly expressed isoform in HL-1 cardiomyocytes and
siRNA-mediated knockdown demonstrated the pro-oxidant role of p38MAPKa signaling. Moreover, the knockout of
the p38MAPK effector MAPKAP kinase 2 (MK2) reproduced the effect of inhibiting or knocking down p38MAPK.

To translate these findings into a setting closer to the clinic a stringent kidney clamping model was used. p38MAPK
activity increased upon reperfusion and p38MAPK inhibition by the inhibitor BIRB796 almost completely prevented
severe functional impairment caused by IR. Histological and molecular analyses showed that protection resulted
from decreased redox stress and apoptotic cell death.

Conclusions: These data highlight a novel and important mechanism for p38MAPK to cause IRl and suggest it as a
potential therapeutic target for prevention of tissue injury.
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Background

Ischemia/reperfusion injury (IRI) contributes to morbidity
and mortality in a wide range of pathologies including
acute coronary syndrome, stroke, acute kidney injury,
sickle cell disease and is particularly unavoidable during
solid organ transplantation [1]. ROS are central to the ini-
tiation and progression of damage to organs throughout
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ischemia/reperfusion (IR). In particular, during the early
phase of reperfusion excessive amounts of ROS are pro-
duced, which through direct damage to biomolecules or
indirectly through the activation of intracellular signaling
pathways cause progression of the injury. ROS have been
linked to inflammasome activation [2,3] and autophagy
[4,5], and once produced they thus have important pace-
maker function on the path to full-blown IRI. Both, mito-
chondrial and non-mitochondrial (i.e. NADPH-dependent
oxidases, NOXs) ROS producing systems are involved in
IRIL. Strikingly, eliminating a single system already resulted
in a therapeutic benefit. Thus genetic ablation of the
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mitochondrial ROS producing enzyme p66SHC [6] or the
inhibition of complex I of the mitochondrial electron
transport chain (ETC), a major source for ROS, through
S-nitrosation [7] prevented IRI in the heart, which could
also be achieved by the knockout of NOX2 or NOX4 [8].
Ablation of both NOX isoforms exacerbated IRI, stressing
the importance of maintaining basal ROS signaling [8].

Despite the acknowledged role of ROS, the use of anti-
oxidants failed to yield a convincing therapeutic benefit
[9]. ROS are short-lived and highly reactive and thus much
of the damage happens rapidly and in close proximity to
the site of production and scavenging mitochondrial ROS
is thus technically challenging. Most desirable, therefore,
are strategies to prevent excessive ROS generation. Intra-
cellular signaling pathways are increasingly realized for the
control they can exert over mitochondria. Oxidative phos-
phorylation (OXPHOS), a main source of mitochondrial
ROS, depends on respiratory super complexes in mito-
chondria [10], whose reversible phosphorylation and other
forms of posttranslational modifications provide important
layers of regulation [11]. This is best understood for pro-
tein kinase A (PKA) that phosphorylates components of
the mitochondrial electron transport chain (ETC), and
thereby decreases ROS production under cellular stress
[12]. Activation of intracellular signaling molecules includ-
ing mitogen-activated protein kinases (MAPKs) during IR
is well documented [13,14]. MAPK comprise a family of
related kinases, which function downstream of similarly
evolutionary conserved upstream signaling components
[15]. The initially characterized signaling proteins ERK1, 2
are targets of mitogenic signaling downstream of growth
factor receptors, RAS, RAF and MEK [16,17], while the
related MAPKs p38MAPK and JNK, also referred to as
stress kinases, serve important functions in cytokine sig-
naling but also cell death induction [15]. In various cell
and organ systems p38MAPK activity is increased upon
reoxygenation/reperfusion and we recently provided first
evidence that its activity may be linked to ROS generation.
These ROS were also essential for cell death induction
in vitro [14] (and unpublished data), a major conse-
quence of p38MAPK signaling during IR [14,18-21]. To
confirm p38MAPK as inducer of ROS-initiated damage to
cells and organs, we used two experimental approaches,
hypoxia/reoxygenation (HR) in vitro on HL-1 cardiomyo-
cytes and mouse embryonic fibroblasts (MEFs) and kidney
clamping in the rat, a well established model for the study
of ischemia/reperfusion injury (IRI) in vivo.

Results

p38MAPKa regulates mitochondrial ROS accumulation
during hypoxia/reoxygenation (HR)

We have shown previously that ischemia in a heterotopic
heart transplant model and hypoxia in cardiomyocytes
in vitro increased p38MAPK activity, which was further
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enhanced during reperfusion and reoxygenation, respect-
ively [14]. Strikingly, p38MAPK inhibition reduced mito-
chondrial ROS levels and prevented cell death [14]. To
corroborate these findings we first established the expres-
sion pattern of p38MAPK isoforms in HL-1 cells by quan-
titative real time PCR. This work identified p38MAPK«a
as the predominantly expressed isoform in these cells
(Figure 1A). These results were also confirmed at the
protein level (data not shown). To substantiate the in-
volvement of p38MAPKa in regulating mitochondrial
ROS levels under cellular stress siRNAs were used to
decrease p38MAPKa expression (Figure 1B). We ob-
served activation of p38MAPK during HR as monitored
by the phosphorylation of its substrates MAPKAP kinase
2 (MK2) [22] and activating transcription factor-2 (ATF2)
(Figure 1C). MK2 phosphorylation was significantly re-
duced following downregulation of p38MAPKa, however,
the phosphorylation of the other p38MAPK substrate
tested, ATF2 [22], was not affected (Figure 1C), suggesting
alternative pathways for activating ATF2. As reported pre-
viously [14], HR resulted in increased ROS levels in HL-1
cells, which were significantly decreased in cells trans-
fected with siRNAs against p38 MAPKu (Figure 1D).

Role of MAPKAP kinase 2 (MK2) in signaling downstream
of p38MAPK

Since siRNA knockdown of p38MAPKa affected MK2 but
not ATF2 phosphorylation, we included MK2-deficient
mouse embryonic fibroblasts (MEFs) [23] in our analyses
and exposed them to HR. As noticed previously in MK2-
deficient mice [23] MEFs also expressed lower levels of
pP38MAPK protein compared to wild-type controls. How-
ever, p38MAPK and MK2 activation occurred normally
during HR and the treatment with BIRB796 showed the
expected decrease in their activities (Figure 2A). While we
did not observe a difference in basal ROS production
between wild-type and MK2 knockout cells, the in-
crease in HR-induced ROS levels was significantly lower
in MK2-deficient cells (Figure 2B, C). Consistent with a
role of MK2 downstream of p38MAPK, ROS production
could also be decreased in wild-type cells through the
application of BIRB796 but not in MK2-deficient cells
(Figure 2B, C). However, application of the antioxidant N-
acetyl-cysteine (NAC) was more potent in decreasing ROS
levels (Figure 2B, C), arguing for additional p38MAPKa/
MK2-independent modes of regulation. To exclude the
possibility that down-regulation of p38MAPKa rather than
the knockout of MK2 caused decreased ROS levels, we
carried out the conditional knockdown of MK2 in HL-1
cells. While we were able to efficiently decrease MK2 pro-
tein levels in these cells, p38MAPK expression remained
unaffected (Figure 2D). Knockdown of MK2 inevitably
reduced phosphorylation of the MK2 substrate HSP25
under HR (Figure 2D). Again we observed decreased ROS
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Figure 1 Knockdown of p38MAPKa (p38a) decreases ROS levels following HR. (A) Quantitative RT-PCR analysis of p38MAPK isoform expression
in HL-1 cells (n = 3). (B-D) Effect of p38MAPKa knockdown on downstream signaling and mitochondrial ROS production. 72 hours after transfection
with p38MAPKa siRNAs (250 nM) or control siRNAs (250 nM), HL-1 cells were exposed to the following HR protocol: hypoxia (1 hour) and reoxygenation
(15 min) and analyzed for the expression of p38MAPKa (B), phosphorylation of MK2 and ATF2 (C) and mitochondrial ROS levels (D) as described in
Methods. Representative immunoblots and summary graphs are shown (B-D). The data are expressed as mean + SEM (n = 3-4). **p < 001, ***p < 0.001
control siRNAs transfected cells vs. control sSiRNA transfected cells undergoing HR; §p < 0.01, #p < 0.001 control siRNA transfected HL-1 cells vs. p38MAPKa
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levels as a result of MK2 knockdown, further support-
ing that the regulation of ROS via p38MAPK proceeded
through MK2 (Figure 2E, F).

p38MAPK inhibition protects from ischemia/reperfusion
injury (IRI)

To test whether p38MAPK inhibition may provide a
clinically feasible approach for the prevention of IRI we
used kidney clamping in the rat, a model that has been
extensively characterized and allows monitoring of the
damage progression by using reliable markers [1,24,25].
In our in vitro and in vivo models studied previously we

had consistently observed maximum signaling activity
between 10 and 15 min after reperfusion and reoxygena-
tion, respectively [14] (and data not shown), and we thus
again performed a first analysis at this time point.
Clamping of the renal artery for 1 hour followed by
15 min of reperfusion resulted in a pronounced activa-
tion of p38MAPK (Figure 3A, B). The overall pattern of
p38MAPK activation is comparable with the one ob-
served in HL-1 cells under HR and in the previously
published heterotopic heart transplant model [14]. Intra-
peritoneal application of BIRB796 (5 mg/kg BW), one
hour before clamping, reduced p38MAPK activity to the
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Figure 2 p38MAPK (p38) increases mitochondrial ROS levels via MK2. (A) WT and MK2-/- MEFs were pretreated with vehicle or BIRB796
(B-796) (50 nM) for 1 hour and then subjected to HR: hypoxia (6 hours) and reoxygenation (15 min). Expression of phosphorylated and
non-phosphorylated p38MAPK, MK2 and HSP25 was determined. (B, C) For mitochondrial ROS measurements WT and MK2-/- MEFs were
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pretreated with either vehicle, BIRB796 (B-796) (50 nM) or N-acetyl cysteine (NAC) (7.5 mM) for 1 hour and exposed to the HR protocol followed
by ROS measurement as described in Methods. (D-F) 72 hours after transfection with MK2 siRNAs (500 nM) or control siRNAs (500 nM), HL-1 cells
were subjected to HR: hypoxia (6 hours) and reoxygenation (15 min) and analyzed for the effect of MK2 knockdown on p38MAPK/MK2 signaling
(D), and mitochondrial ROS production (E, F) during HR as described in the Methods. Representative immunoblots (A, D), fluorescence
images (B, E) and summary graphs (C, F) are shown. The data are expressed as mean +SEM (n = 6-8). **p < 0.01, **p < 0.001 vs. WT

MEFs undergoing HR; #p < 0.001 vs. control siRNAs transfected HL-1 cells, subjected to HR.

background levels observed in sham-operated animals
(Figure 3A, B). The changes in p38MAPK activity were
also mirrored in the phosphorylation of its substrate
MK?2 (Figure 3A, B). No effect of the p38MAPK in-
hibitor on the activation of the related MAPKs ERK
and JNK was observed (Figure 3A, C), indicating that
within this group of kinases the expected specificity
was achieved.

To monitor kidney function serum creatinine and urea
levels were monitored over a period of seven days follow-
ing renal IR. While setting up the model system we had
chosen an ischemia time, which resulted in a pronounced
deterioration of kidney function that was largely recover-
able within a seven days period as based on the parame-
ters chosen here. As shown in Figure 4A and B, serum
creatinine and urea increased over two days of reperfusion
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Figure 3 Effect of p38MAPK (p38) inhibition on intracellular signaling following IR. Rats were pretreated with the carrier DMSO or BIRB796
(B-796) (5 mg/kg BW) for 1 hour and subjected to 1 hour of renal ischemia followed by different time points of reperfusion (15 min, 2 days,

7 days). Kidneys were harvested at given time points of reperfusion and total tissue lysates were used to determine activation pattern of MAPKs
(P38MAPK, JNK;, ERK) and the downstream target of p38MAPK (MK2) by phosphorylation specific antibodies. A representative immunoblot

(A) and summary graphs (B, C) are shown. Results are given as mean + SEM (n = 3). ** p < 0.01, ***p < 0.001 vs. sham-operated group;

to peak at day 3 in animals treated with DMSO (carrier).
Treatment with the p38MAPK inhibitor prevented this
increase, suggesting that functional damage to the kidney
had been averted. Since the use of both biomarkers has
been reviewed critically [26], we also included in our ana-
lyses two additional recently characterized marker pro-
teins cystatin C [27] and NGAL [26,28]. The increase in
cystatin C serum levels was significantly less pronounced
in p38MAPK inhibitor-treated animals (Figure 4C).
Similar results were obtained with NGAL (Figure 4D).
Taken together, all markers tested responded to ischemia/
reperfusion with the expected increase, which was sensi-
tive to the inhibition by BIRB796. In a recent report HSP70
was suggested as an early and sensitive biomarker of acute

kidney injury (AKI), suitable also for monitoring of reno-
protective strategies [29]. IR caused a pronounced increase
in HSP70 protein levels by day 2, while application of
BIRB796 dramatically decreased the effect on HSP70 ex-
pression, indicating reduced incidence of AKI with this
treatment (Figure 4E).

While various methods can be used to measure ROS dir-
ectly in isolated cells and tissues, no robust methods are
available for in vivo application. Thus the use of markers
for the oxidation of lipids, nucleic acids or proteins pro-
vides indirect means to gain insight into the generation of
ROS [30]. First, cell lysates were probed with antibodies
directed against 3-nitrotyrosine, a marker for oxidized pro-
teins. The analysis of day 2 samples revealed increased
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IR-7d group.

Figure 4 p38MAPK (p38) inhibition prevents ischemia/reperfusion-induced increase in the serum levels of kidney function markers and
oxidative stress indicators. Serum levels of creatinine (A) and urea (B) were measured on indicated days (DO to D7) following IR in rats
pretreated with either BIRB796 (B-796) at two different doses (5 mg or 20 mg/kg BW) or vehicle (DMSO) only. Day O represents measurements
before ischemia in every group. Likewise, serum cystatin C (C) and NGAL (D) levels were measured on indicated days of reperfusion in another
set of experiments where rats were pretreated with either BIRB796 (B-796) (5 mg/kg BW) or DMSO only. Results are given as mean + SEM (n = 4-7).
*n < 005, **p < 0.01 ***p < 0001, difference between DMSO- and BIRB796-treated groups at the given time points. (E-H) Rats were pretreated with
BIRB796 (B-796) (5 mg/kg BW) for 1 hour and subjected to 1 hour of renal ischemia followed by different time points of reperfusion (15 min, 2 days,

7 days). Kidneys were harvested at given time points of reperfusion and total tissue lysates were used to determine the expression level of HSP70 (E),
the abundance of 3-nitrotyrosine (3-Nitrotyr) (F) and 4-HNE modified proteins (G), and the phosphorylation of H2AX (H). Results are given as mean +
SEM (n = 3-4). $p < 0.01, @p < 0.05 vs. sham-operated group, **p < 0.01 vs. IR-15 min group, §p < 0.01, #p < 0.05 vs. IR-2d group, *p < 0.05 vs.

levels of this redox modification, which were significantly
reduced in inhibitor-treated animals (Figure 4F), indicat-
ing lower levels of ROS/NO. We also tested in the same
samples a biomarker for oxidized lipids, 4-hydroxynonenal
(4-HNE) [30]. As shown in panel G of Figure 4, lipid per-
oxidation was already visible at the earliest reperfusion
time point analyzed and again at day 7, suggesting 4-
HNE as an early marker of redox stress. In all cases sig-
nal intensity decreased to background levels in animals
receiving the p38MAPK inhibitor. As a final parameter we
also analyzed the phosphorylation modification of his-
tone 2A family member X (H2AX), which serves as an in-
dicator of endogenous oxidants [31]. As in the case of
3-nitrotyrosine, phosphorylation was most prominent
on day 2 and again almost completely abolished by
p38MAPK inhibition (Figure 4H). Together, these
data demonstrate that application of BIRB796 prevents
functional impairment usually associated with IR in the
model chosen here. Finally, we also analyzed the effects of
p38MAPK inhibition on cell death in the kidney by ana-
lyzing the processing of inactive caspase-3 in total kidney
lysates (Figure 5A) and by TUNEL staining (Figure 5B, C).
Strikingly, p38MAPK inhibition strongly blocked caspase
3 activation (Figure 5A) and in inhibitor-treated animals a
significant decrease in the number of apoptotic tubular
cells, particularly in the corticomedullary region, was also
observed (Figure 5B, C).

Discussion

While excessive ROS production is responsible for the
development of IRI, the use of antioxidants in the clinic
has been faced with little success for its prevention [13,32].
Accumulating evidence suggests that signaling proteins
may be targeted to modulate mitochondrial processes in-
cluding ROS production [13,14,32,33]. In our work we fo-
cused on p38MAPK, which gets activated during IR and
for which potent low molecular weight inhibitors are avail-
able. This kinase has been implicated in the development
of IRI [14,18-21], mainly through induction of cell death.
However, while ROS have been implicated in the activation
of MAPKs [34], we show here that this early activation of
p38MAPK during reperfusion actually works upstream of

changes in cellular ROS levels. We firmly establish
p38MAPK as inducer of cellular redox stress by performing
siRNA-mediated knockdown of the predominantly expressed
p38MAPKa isoform in HL-1 cells and provide evidence for
a role of MK2 as a possible downstream effector in this
process. Most importantly, we can show that p38MAPK is
an important inducer of pro-oxidant stress in vivo and that
inhibition of p38MAPK activation in a rat model of renal IRI
prevented the functional deterioration caused by IR.

The development of strategies for the prevention of
renal ischemia/reperfusion injury (IRI) is essential as this
condition is one of the most common causes of acute
renal failure resulting in increased morbidity and mortality
[35]. In particular the early phase of reperfusion, when the
major ROS release occurs, is critical for the further course
of events. Once produced, ROS directly damage proteins,
lipids and nucleic acids [34] and they trigger various forms
of cell death, resulting in the release of endogenous li-
gands (damage-associated molecular patterns, DAMPs)
that activate signaling pathways, including the stress ki-
nases JNK and p38MAPK [36]. DAMP-activated Toll-like
receptor 4 (TLR-4) signaling, leading to the production of
ROS through NOX4, has been implicated in the apoptosis
of post-hypoxic TLR4-expressing renal tubule epithelial
cells (RTECs) [37]. Moreover, ROS themselves have been
linked to the activation of MAPKs and cell injury [38].
One scheme involves apoptosis signal-regulating kinase 1
(ASK1) [39,40], from which the negative redox sensor
thioredoxin dissociates, resulting in the formation of an ac-
tive ASK1 complex after the recruitment of TNF receptor-
associated factors 2 (TRAF2) and 6 (TRAF6) and the
activation of Jun N-terminal kinase (JNK) [41] or p38MAPK
[42]. Thus halting the early ROS production holds the
promise to prevent or limit further damage amplification.
Our findings suggest that preventing p38MAPK activa-
tion, which occurs early during reperfusion, may achieve
this goal. We currently do not know what activates
p38MAPK in this setting, whether this reflects DAMP sig-
naling or is induced by a first wave of ROS production,
which then is further amplified by p38MAPK activa-
tion. p38MAPK may be a highly suitable target for
intervention as it is also involved in inflammation
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reperfusion (15 min, 2 days, 7 days). Kidneys were harvested at given time points of reperfusion and total tissue lysates were used to determine
activation of caspase-3. A representative immunoblot is shown (A). IR-induced tubular cell death was assessed by TdT-mediated dUTP nick end
labeling (TUNEL) staining at day 2 of reperfusion as described in Material and Methods. Representative images of the three regions of the kidney
(cortex, corticomedullary junction and medulla) at 400x magnification and summary graph of the TUNEL positive cells are shown (B-C). Arrows
point to the apoptotic cells with condensed nuclear material. Results are given as mean + SEM (n = 4). *p < 0.05, ***p < 0.001 vs. vehicle-treated

uced apoptosis of tubular cells. Rats were pretreated with the
1 hour of renal ischemia followed by different time points of

signaling [43], which additionally contributes to the de-
velopment of IRI [1]. In this regard inhibiting p38MAPK
may be superior to interfering with NFkB signaling, which
efficiently blocked inflammation during intestinal ischemia/
reperfusion but at the same time also caused severe damage
to the reperfused mucosa due to the lack of NFkB survival
activity [44].

p38MAPK and some of its upstream components have
been implicated in the regulation of cellular stress-induced
cell and organ damage. Cardioprotection during IR has
been reported following the disruption of a single copy of
the p38MAPKa gene [45]. Inhibition of the p38MAPK up-
stream kinase MAP3K TGFp-activated kinase 1 (TAK1)
protected against oxygen and glucose deprivation (OGD) in
primary cortical neurons and reduced the infarct volume
after middle cerebral artery occlusion in vivo [46]. However,
only short term, but not prolonged inhibition of TAK1
was protective by inferring with the activation of

p38MAPK and JNK and the formation of superoxide. In
cultured cardiac myocytes the MAP2K MKK6 directly
stimulated p38MAPK through phosphorylation and acti-
vated p38MAPK promoted cell survival, while activation
by the related MKK3 resulted in death [47,48]. Conse-
quently, MKK6 transgenic mouse hearts were protected
against IR through a mechanism which involved upregula-
tion of the small heat shock protein alpha B-crystallin
[49]. The fact that inhibition of stress kinase signaling may
be protective in the setting of ischemia/reperfusion by
preventing cell death has been pointed out before. Thus
the cardioprotective action of Sirtl during IR results from
reducing the activation of JNK and p38 [21]. Similarly the
protective effects of curcumin in left anterior descending
coronary artery (LAD) occlusion goes along with the at-
tenuation of p38 and JNK activity [20]. The protective
effect was further enhanced by simultaneous activation of
several prosurvival kinases [20]. Direct p38MAPK inhibition
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decreased cardiomyocyte apoptosis and helped to main-
tain cardiac function in the Langendorff-perfused rabbit
heart [50]. In our work [14] we previously have obtained
evidence that p38MAPK signaling is activated during IR
and pilot studies in cardiomyocytes undergoing hypoxia/
reoxygenation showed that p38MAPK inhibition not
only reduces ROS levels but also cell death [14]. How-
ever, none of the published reports placed p38MAPK
above ROS production, thus making it a suitable target
for the prevention of IRI, which cannot be prevented
by antioxidants.

How does the inhibition of p38MAPK prevent IRI? Most
strikingly, in our experiments protection by BIRB796 was
afforded under severe ischemic conditions (ischemia time
of 1 hour), as documented by the established functional
markers creatinine and urea. While serum creatinine and
urea provide measures of kidney function, increase in
Hsp70 [29] and in particular NGAL [51,52] are indicators
of renal epithelial injury [53]. These findings are also cor-
roborated by the observed protective effect of p38MAPK
inhibition on the survival of tubular epithelial cells
(Figure 5B, C). Apoptosis is usually caused by the acute is-
chemic or nephrotoxic events that are not severe enough
to induce tubular necrosis and result in a different degree
of impairment and acute renal failure (ARF). Therapeutic
interventions that inhibit apoptosis of renal tubular cells
have the potential of minimizing deterioration of renal
function.

Biochemical analyses also suggested the prevention of
oxidative damage in the tissues of p38MAPK inhibitor-
treated animals (Figure 4). Damage caused by IR has been
linked predominantly to mitochondrial ROS, although
there is evidence for the involvement of non-mitochondrial
ROS sources [54]. In our in vitro experiments we used
MitoTracker Red CM-H2XRos a ROS-sensitive dye, which
should specifically detect ROS located in the mitochondria.
Since increased ROS levels and cell death depended on
p38MAPK activity and the antioxidant N-acetyl cysteine
(NAC) prevented apoptosis [14], p38MAPK may cause
damage by increasing mitochondrial ROS levels. The
highly reactive and short-lived nature of ROS makes it dif-
ficult to measure them in vivo and surrogate markers are
commonly used. Nitration of tyrosine residues by peroxy-
nitrites, generated by the rapid interaction of superoxides
with nitric oxide (NO), leads to the formation of nitro-
tyrosine [55]. Our data showed increase in 3-nitrotyrosine
formation at day 2 of reperfusion, which was signifi-
cantly reduced following the treatment with BIRB796
(Figure 4F). These findings could be confirmed by using
4-HNE as a marker for lipid peroxidation (Figure 4G).
The reduction in oxidative damage following p38MAPK
inhibitor treatment also correlated with the reduced
functional impairment of the kidney following IR,
supporting a direct role for ROS in causing damage
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to the kidney. Similar results were obtained using a
third marker, the phosphorylation modification of H2AX
(Figure 4H).

It is still an open question how the damage signal is
propagated downstream of p38MAPK. Our work sug-
gested that this at least in part may involve MK2. MK2-
deficient hearts subjected to 30 min ischemia followed
by 2 hours of reperfusion in the Langendorff model were
resistant to myocardial IRI and also showed a dimin-
ished number of apoptotic cardiomyocytes [56]. This
view was contrasted by findings obtained in a later study
[23], which used a related approach. Similar infarct sizes
were observed in wild-type and MK2 deficient hearts,
however, these could be decreased by the p38MAPK
inhibitor SB203580 [23], suggesting p38MAPK targets
outside of MK2. Protection again was observed in a
model of cerebral ischemic injury in MK2-deficient mice
[48]. Future work will have to chart possible signaling
connections between MK2 and mitochondrial ROS
production.

Conclusions

ROS are causal for development of ischemia/reperfusion
injury and consequential organ dysfunction or failure.
Here we demonstrate for the first time that inhibition of
p38MAPK prevents the early ischemia/reperfusion-asso-
ciated decline in organ function, which may halt further
deterioration. Our data hint that reducing redox stress
and cell death may be the underlying cause. p38MAPK in-
hibition may thus be an alternative to antioxidants, which
failed in the clinic for the prevention of redox stress-
associated organ damage.

Methods

Cell culture and hypoxia/reoxygenation (HR) induction
The HL-1 cardiomyocyte cell line has been derived from
AT-1 mouse atrial myocytes, obtained from transgenic
mice expressing SV40 large T antigen under the control
of atrial natriuretic factor (ANF) promoter [57,58]. Cells
were maintained in Claycomb medium (Sigma Aldrich,
Schnelldorf, Germany) supplemented with 10% fetal calf
serum (FCS) (PAA Laboratories, Pasching, Austria), peni-
cillin (100 U/ml) (PAA Laboratories, Pasching, Austria),
streptomycin (100 pg/ml) (PAA Laboratories, Pasching,
Austria), 0.1 mM norepinephrine (Sigma Aldrich, St. Louis,
MO, USA) and 2 mM L-glutamine (GIBCO Invitrogen,
Grand Island, NY, USA), as described previously [57].
Murine embryonic fibroblasts (MEFs), isolated from WT
and MK2 deficient mice [59] (provided by Matthias Gaestel,
Hannover, Germany), were cultivated in DMEM (PAA
Laboratories, Pasching, Austria) containing 10% FCS,
2 mM L-glutamine, penicillin (100 U/ml) and strepto-
mycin (100 pg/ml). Cells were subjected to hypoxia/
reperfusion (HR) as described previously [14]. Briefly, for
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induction of hypoxia (H) cells were maintained in starvation
medium (DMEM or Claycomb medium, containing 0.05%
FCS) and exposed to 0.5% O, at 37°C for 1 or 6 hours
using a Modular Incubator Chamber (Billups-Rothenberg,
Del Mar, CA, USA). For subsequent reoxygenation (R),
starvation medium was replaced by standard culture
medium. BIRB796, a highly potent ATP-competitive type
II inhibitor of p38MAPK [60] (commercially obtained
from Axon MedChem, Groningen, The Netherlands or
kindly provided by Boehringer Ingelheim Pharmaceuticals,
Ridgefield, CT, USA), was used in all in vitro and in vivo
experiments described here.

Immunoblotting

Whole cell and tissue lysates were prepared using ice
cold NP40 lysis buffer (25 mM TRIZMA base, 150 mM
NaCl, 10 mM NayP,0, 25 mM B-glycero-phosphate, 10%
glycerol, 0.75% NP-40, 25 mM NaF, pH 7.2) and RIPA
lysis buffer (1% NP-40, 1% CHAPS, 0.1% SDS, 0.15 M
NaCl, 10 mM Na-phosphate, 2 mM EDTA, 50 mM NaF,
pH 7.2), respectively, containing 1:100 protease inhibitor
cocktail set-I (Calbiochem, Darmstadt, Germany) and Na-
orthovanadate (0.2 mM). Protein content was determined
by using Bio-Rad DC protein assay kit (Bio-Rad, Hercules,
CA, USA). Immunoblotting was performed as described
previously [14,61]. Briefly, proteins were separated by SDS-
PAGE and transferred to nitrocellulose membrane. The
membranes were blocked in 5% skim milk powder (Fluka,
Buchs, Switzerland), dissolved in TBST (50 mM TRIZMA
base, 150 mM NaCl, pH 7.5 adjusted with HCl, 0.1%
Tween-20), for one hour at room temperature and probed
over night with appropriate primary antibodies, diluted
in 5% BSA or skim milk powder as recommended by the
provider, followed by incubation for one hour in HRP-
conjugated secondary antibody, diluted in 5% skim milk.
Primary antibodies against phospho-p38MAPK (9211),
p38MAPK (9212), phospho-MAPKAP kinase 2 (3044),
MAPKARP kinase 2 (3042), phospho-ATF2 (9221), Caspase-
3 (9662), phospho-H2AX and phospho-HSP25 (2401) were
obtained from Cell Signaling Technology, Boston, MA,
p38MAPKa (sc-535), HSP70 (sc-66048), ATF2 (sc-187),
phospho-ERK (sc-16982R), ERK1 (sc-94) and JNK (sc-571)
from Santa Cruz Biotechnology, Santa Cruz, CA, phospho-
JNK (AF1205) from R&D systems, Minneapolis, MN,
USA, HSP25 (SPA-801) from Enzo Life Sciences, Lausen
Switzerland, 3-Nitrotyrosine (ab52309) from Abcam,
Cambridge, UK, GAPDH (AM4300) from Ambion, Grand
Island, NY, a-tubulin (T5168) from Sigma Aldrich Dorset,
UK and 4-hydroxy-2-nonenal (4-HNE) from Japan
Institute for the Control of Aging. Antibodies were visual-
ized by ECL western blot detection reagents (Amersham,
Buckinghamshire, UK), quantified by densitometric scan-
ning using the Image J program (NIH, Bethesda, MD) and
normalized against loading controls.
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siRNA transfection

Cells were transfected one day after seeding in a 6 well
plate using DharmaFECT-1 (Dharmacon RNA technolo-
gies, Lafayette, CO, USA). ON TARGETplus SMARTpool
small interfering RNAs (siRNAs) for mouse p38MAPKa
and MAPKAP kinase 2 (MK2) were obtained from
Thermo Scientific (Lafayette, CO, USA). The effect of
siRNA knockdown on endogenous p38MAPKa and MK2
expression, respectively, was confirmed by immunoblot-
ting 72 hours post transfection. For negative controls,
microarray-tested siGENOME Non-Targeting siRNA 2
(Thermo Scientific, Lafayette, CO, USA) was used, which
according to company information possesses at least four
mismatches to any human, mouse, or rat gene. 48 hours
after transfection, cells were set up in parallel to study the
effect of p38MAPKa and MK2 knockdown on p38MAPK
downstream signaling and mitochondrial ROS production.
72 hours after transfection cells were used in experiments.

RNA isolation and cDNA synthesis

Total RNA from tissues and HL-1 cells was isolated using
the Macherey-Nagel NucleoSpin RNA II Kit (Macherey-
Nagel, Dueren, Germany) according to the manufacturer’s
instructions, which included a DNAse-I digest to avoid
contamination with genomic DNA. RNA integrity and
quality was verified by agarose gel-electrophoresis and
spectrophotometrically, respectively. For cDNA synthesis
1-2 pg of total RNA was reverse transcribed in a 30 pl re-
action volume using oligo(dT) primer and the RevertAid™
First Strand ¢cDNA Synthesis Kit (Fermentas GmbH, St.
Leon-Rot, Germany).

Quantitative real time (qRT)-PCR

The following primer pairs specific for murine isoforms of
p38MAPK (o, B, v, 8) and the housekeeping gene RPS29
were designed; p38MAPKa forward: 5'-GCCTGTTGCT
GACCCTTATGACC-3’, p38MAPKa reverse: 5'-GGGG
TGGTGGCACAAAGCTGAT-3’, p38MAPKp forward:
5'-AGCCCTATGATGAAAGTGTTGAGGC-3', p38MAPKf
reverse: 5 -TCAATTTCATGGGTGCCAGGGAGC-3/,
p38MAPKy forward: 5'-CTGAGTTTGTTCAGAAGC
TACAGAG-3’, p38MAPKYy reverse: 5'-ACAGCCTGAG
GGCTTGCGTTG-3’, p38MAPKS forward: 5'-CCCCAA
GAAGGATTTC ACACAGC-3’, p38MAPKS reverse: 5'-
GTGTTGTTTCCATTCGTCCACGC-3’, RPS29 forward:
5'-GCTCTACTGGAGTCACCCACGGAA-3’, RPS29 re-
verse: 5'-ACTGGCACATGTTCAGCCCGTA-3". The
primers were taken from regions with the lowest se-
quence homology between the isoforms with at least 3
bases at the 3'-end of the primer being absolute (100%)
specific for the respective isoform. The optimal annealing
temperature for each primer pair was determined experi-
mentally using conventional temperature gradient PCR
(Taq DNA Polymerase, Life Technologies, Paisley, UK)
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from mouse heart cDNA as template. The annealing
temperature gradient was from 54°C to 68°C. PCR prod-
ucts were visualized by ethidium bromide staining under
UV-light following separation on 1.4% agarose-gels. The
determined annealing temperature yielding only the specific
PCR product of the expected size was used for qRT-
PCR analysis. Furthermore, melting curve analysis fol-
lowing qRT-PCR revealed one specific peak for each
primer pair (data not shown). Specificity of primer pairs
was confirmed by BLAST (NCBI), and possible dimer
formation was analyzed using FastPCR [62]. All pri-
mer pairs were intron-spanning. Quantitative RT-PCR
reactions were performed in triplicates in a 25 pl volume
containing 5 pl of the 1:5 diluted cDNA, 0.5 pM of each
primer (Biomers, Ulm, Germany), and 5 ul five-fold iQ™
SYBR® Green Supermix (Bio-Rad Laboratories GmbH,
Munich, Germany) on a Bio-Rad iQ5 Cycler (Bio-Rad
Laboratories GmbH, Munich, Germany). After each run a
melting curve analysis was carried out to confirm the spe-
cificity of the PCR products. Data were normalized to the
housekeeping gene RPS29 and the untreated controls
using the in-built software (normalized fold expression).

Measurement of ROS levels by fluorescent imaging

40-60 x 10° cells were placed in fibronectin/gelatin-
coated Lab-Tek chambered cover glass (Nalge Nunc,
Rochester, NY), and pretreated with either the carrier
DMSO, BIRB796 or N-acetyl cysteine for 1 hour and then
subjected to a hypoxia/reperfusion protocol: hypoxia (1 or 6
hours, 05% O,, 37°C, 0.05% FCS DMEM or Claycomb
medium) and reoxygenation (2 or 15 min, normoxic atmos-
phere, 37°C, DMEM or Claycomb medium). For the staining
procedure, the cells were incubated with MitoTracker Red
CM-H2XRos (0.2 uM; Invitrogen Molecular Probes, Eugene,
OR, USA) at 37°C for one hour when hypoxia time of one
hour was used or for 15 min, when the hypoxia time was 6
hours followed by 15 min of reperfusion (during reperfusion).
Digital images were taken using an Olympus IX-70 inverted
microscope (Olympus America, Melville, NY, USA) with an
Olympus 40 x water immersion objective (numerical aper-
ture 0.8) and an Olympus U-RFL-T mercury-vapor lamp. Im-
ages were acquired using a Kappa ACC1 camera and Kappa
ImageBase software (Kappa Opto-electronics, Gleichen,
Germany). For MitoTracker Red CM-H,XRos a 568 nm-filter
was used. Grey values were measured using Scion Image soft-
ware for Windows. For every experimental condition grey
values from 80-100 cells were averaged.

Rat kidney clamping

Male Lewis rats weighing 220-250 g were obtained from
Charles River, Germany and kept with unlimited access
to water and standard laboratory chow in agreement
with local guidelines and the Austrian Animal Care Law.
All experiments were approved by the Austrian Ministry
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of Education, Science and Culture and were performed
in accordance with national animal protection guide-
lines. Rats were anaesthetized by intramuscular injection
of ketamine (100 mg/Kg BW) and xylazine (10 mg/kg
BW) (Graeub Veterinary Products, Bern, Switzerland). A
middle incision was made to expose the abdominal cav-
ity and after right side nephrectomy the left renal artery
was identified and liberated by blunt dissection. Renal artery
was clamped (1 hour) using micro serrefine clamps (FST#
18055-01; Fine Scientific Tools, Heidelberg, Germany) to
induce ischemia, followed by different times of reperfusion
(15 min, 2 days, and 7 days). Renal occlusion was macro-
scopically verified by the change in color of the kidneys to
pale and reperfusion by a blush appearance of the kidney.
DMSO/BIRB796 (5 or 20 mg/kg BW) was applied intra-
peritoneally one hour prior to vessel clamping. Surgery
was performed at room temperature; however, soon after
kidney clamping the animal was placed on the heating
pad (37°C) and kept there during ischemia/clamping
(1 hour) and early reperfusion until the animal recovered
from anesthesia. At the given time points of reperfusion
the animals were sacrificed and kidney tissues were har-
vested and stored in neutrally buffered formaldehyde
(4.5%) and liquid N, for tissue histology and biochemical
analyses, respectively. The sham-operated animals under-
went the surgical procedure that was identical to the is-
chemic rats except that the clamps were not applied.

Assessment of renal function

Renal function was assessed by serum creatinine, urea,
cystatin C and NGAL measurement. Blood samples (0.2 -
0.4 ml) were taken from the tail vein before ischemia as
well as at various time points after reperfusion and centri-
fuged (10800 x g for 4 min) to isolate serum. Serum cre-
atinine and urea were routinely measured at the Central
Institute for Medical and Chemical Laboratory Diagnos-
tics (ZIMCL) of the Innsbruck Medical University (IMU).
Serum cystatin C and NGAL were measured using ELISA
kits (BioVendor, Brno, Czech Republic).

TUNEL staining (terminal deoxynucleotidyl transferase
(TdT)-mediated dUTP nick end labeling)

Kidney samples were fixed and collected in 4.5% neu-
trally buffered formaldehyde at room temperature until
further processing. Dehydration, paraffin embedding and
preparation of slides were done following standard hist-
ology procedures. For the assessment of apoptotic cells
tissue sections were stained with the /n Situ Cell Death
Detection Kit (Roche Inc., Mannheim, Germany). For
antigen retrieval the slides were pretreated in citrate buf-
fer (pH 6) in the microwave at 750 watt for 15 min and
endogenous peroxidase was blocked by incubation in 5%
H,0O, in methanol for 15 min. Afterwards, the TUNEL
reaction mixture was prepared freshly and the slides
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were incubated for 45 min in a humidified chamber. Slides
were counterstained with hematoxylin-eosine (HE) and
subsequently analyzed under light microscope. Each histo-
logical section was divided into 3 parts (cortex, corticome-
dullar junction and medulla). The results were quantified
by counting the number of positively stained cells per 5
high-power fields (HPF) at 400 x magnification for each of
the 3 areas and given as percentage.

Statistical analyses

All numerical data are expressed as mean values + SEM.
The experimental groups were compared using one way or
two way ANOVA followed by Bonferoni post hoc test.
A p value of <0.05 was considered to be statistically
significant.
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