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Abstract

Recent advances in tumor biology led to the realization that, in order to understand the mechanisms involved in
proliferation and invasion of tumor cells, an analysis of the complex interactions that tumor cells establish with
host cells of tumor microenvironment is required. The bidirectional interactions between tumor cells and compo-
nents of tumor microenvironment, in particular endothelial cells, cells of monocyte/macrophage lineage and fibro-
blasts/myofibroblasts, play a critical role in most of the events that characterize tumor progression and metastasis.
Interactions between these “reactive” normal cells and the genetically altered tumor cells, by either cell-to-cell con-
tacts or soluble mediators, control the most aspects of tumor formation and progression. This review addresses
some of the experimental evidences documenting that tumor cells may influence host cells of their own microen-
vironment by triggering changes that facilitate their local as well as distant dissemination. Therefore, it focuses on
macrophages and fibroblasts that, upon stimulation by tumor cells, change their state towards a tumor-promoting-
like phenotype.

Cancer as a non-homogeneous mass
Most primary tumors can be treated successfully by
surgery alone or in combination with chemotherapy,
immunotherapy or radiotherapy. However, the treat-
ment of disseminating tumors, once they have spread to
secondary sites, is a much more difficult task. Effective
treatment of multiple metastatic lesions by surgery or
radiotherapy is usually impossible due to their distribu-
tion in vital organs. Tumor cell invasiveness and metas-
tasis occur by a complex series of events in which
malignant cells invade host tissues, penetrate into body
cavities, lymphatic and/or blood circulatory systems.
Subsequently they disseminate to distant sites where
they invade into new surrounding tissues and proliferate
to form secondary tumors [1-3]. Metastatic diffusion of
cancer cells remains the most important clinical pro-
blem, and malignancy is represented by the ability of
tumor cells to invade adjacent host tissue at the primary
site and then to diffuse and colonize secondary organs.

Epidemiological and experimental evidences suggest
that a wide variability exists in the metastatic spread of
different human malignancies, but even cancers of
the same histological type often produce quite diverse
disease progression and survival outcomes for individual
patients [4]. This suggests that even in the same histolo-
gical class of cancer, the expected incidence and locali-
zation of metastatic lesions is not completely certain
[4,5].
The capacity of cancers to evolve and change during

their development has been termed “tumor pro-
gression” by L. Foulds (1954) [6]. The biological char-
acteristics that define tumor progression have been
extensively described, although the underlying mechan-
isms are still not completely defined. Tumor cells,
during their sometimes decade-long development,
accumulate increasingly genetic alterations, which are
typically generated by random mutational events,
finally allowing them to assume all the characteristics
of an invasive and metastatic cancer. In concert with
this “genetic instability”, a key role in favouring
genetic/epigenetic changes in tumor cells is played by
local as well as systemic host factors [7-9]. It has been
demonstrated that metastatic dissemination can be

* Correspondence: lido.calorini@unifi.it
Dipartimento di Patologia e Oncologia Sperimentali, Università degli Studi di
Firenze and Istituto Toscano Tumori (ITT), Italy

Calorini and Bianchini Cell Communication and Signaling 2010, 8:24
http://www.biosignaling.com/content/8/1/24

© 2010 Calorini and Bianchini; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:lido.calorini@unifi.it
http://creativecommons.org/licenses/by/2.0


influenced by diet [10-13], the neuro-endocrine state
[14] and inflammatory-reparative processes [15-17].
Among the local factors, particular attention has been
devoted to the interactions that tumor cells establish
with various noncancerous types of cells that reside in
or are attracted to the tumor microenvironment. In
particular, the interaction of tumor cells with platelets
[18], lymphocytes [19], polymorphonuclear cells
[20,21], fibroblasts [22-25] and monocytes/macro-
phages was proved to be relevant to tumor progression
[26,27]. Under certain conditions, stromal cells may
inhibit tumor growth, but in other cases, they can sti-
mulate the growth and invasiveness of tumor cells.
Therefore, host cells, mainly in proximity to tumor
cells, may markedly alter tumor growth and invasive-
ness. A bidirectional interaction between tumor cells
and host cells, is now recognized as crucial for the
decision of whether tumor cells progress toward meta-
static dissemination or whether they remain dormant
[28,29]. Numerous bioactive agents such as proteins of
the extracellular matrix, growth factors, cytokines, che-
mokines and other molecules secreted by host cells
contribute to the evolution of tumor cells, including
the generation of a metastatic phenotype. It is hence
important to recognize that tumors, like normal tis-
sues, are dependent on the formation of a reactive
stroma. Nicolson has postulated that the acquisition of
a malignant phenotype in tumor cells may be related
in part to a phenotypic switch promoted by the host
environment and related to quantitative transcriptional
or translational changes, resulting in a transient altera-
tion in the concentrations of biologically active pro-
ducts [30]. Thus, both irreversible genetic alterations
and transient phenotypic properties contribute to the
generation of a malignant phenotype.
Although additional interactions will almost certainly

be discovered and the significance of these interactions
will be elucidated, it is already at present well accepted
that the reactive stroma of cancers is usually associated
with increased numbers of fibroblasts, enhanced capil-
lary density and the deposition of a new extracellular
matrix that is rich in type-1-collagen and fibrin. Circu-
lating monocytes are also recruited to the reactive
stroma in response to the tumoral chemotactic factors
and the wound healing-like processes occuring during
tumor growth. Tumor-associated macrophages derived
from differentiated monocytes and resident macro-
phages represent the major component of host leuko-
cytes that infiltrate tumor tissues.
This review focuses on the cancer progression towards

invasiveness and metastatic spread, taking into consid-
eration the biological role expressed by the so-called
“tumor-associated macrophages” (TAM) and “cancer-
associated fibroblasts” (CAF).

Tumor cell - macrophage interactions
The monocyte/macrophage lineage constitutes a large
portion of tumor infiltrating host cells. They enter into
the tumor mass via blood vessels throughout the life
span of tumors, from early-stage nodules just beginning
to vascularise to late-stage tumors that are invasive and
metastatic [31,32]. A number of tumoral chemoattrac-
tants ensure this recruitment, including colony-stimulat-
ing factor-1 (CSF-1, also known as M-CSF) [33,34], CC
chemokines [35] and vascular endothelial growth factor
(VEGF) [36].
Two major lines of evidence connect macrophages

and cancer: Firstly the association of chronic inflamma-
tion, that leads to macrophage accumulation, with can-
cer initiation and promotion [15-17]; secondly a high
density of TAM correlates with poor prognosis in over
80% of studies [37]. TAM accumulate in critical areas of
tumors, such as the hypoxic areas, and hypoxia triggers
a pro-angiogenic program in these cells [38]. Hypoxia
characterizes the microenvironment of many solid
tumors and it has been shown to affect many biological
properties of host cells as well as tumor cells that are
implicated in tumor growth and metastatic dissemina-
tion, e.g. the switch from oxidative to glycolytic metabo-
lism, the production of vascular endothelial growth
factors and protease activities [39,40].
Macrophages are remarkable for the diverse activities

in which they can engage on different occasions. Many
of these activities appear to be opposing each other:
pro-inflammatory vs anti-inflammatory, immunogenic vs
tolerogenic, and tissue destructive vs tissue reparative
processes. In particular, we know that macrophages
from healthy or inflamed tissues are capable of lysing
tumor cells, presenting tumor-associated antigens to
T-cells and expressing stimulatory cytokines for T- and
NK-cells [41]. On the other hand, macrophages isolated
from experimental as well as spontaneous tumors show
a reduced level of cytotoxic activities [26,27]. Clearly,
macrophages are multifunctional cells that “adapt”
themselves to the stimuli that prevail at the site to
which they have been attracted [42]. Quiescent macro-
phages of tissues (resident macrophages) respond to
immune or bacterial stimuli by expressing new func-
tional activities, resulting in their capacity to recognize
and destroy transformed cells (activated macrophages).
During this transition, macrophages may express a num-
ber of discrete phenotypic changes characterized by
specific functional activities. It is possible, that the con-
trasting effects exerted by TAM on the growth and
metastatic diffusion of tumor cells may reflect different
states of activation acquired by macrophages in the
tumoral microenvironment. The plasticity of macro-
phages may be exploited by tumor cells to elicit distinct

Calorini and Bianchini Cell Communication and Signaling 2010, 8:24
http://www.biosignaling.com/content/8/1/24

Page 2 of 10



functions at different stages of tumor progression. It is
also possible that multiple subpopulations of TAM exist
within a tumor mass, and these may change during
tumor development and on the basis of their location.
Mantovani et al. propose that TAM switch into polar-

ized type II or M2 macrophages [43]. These cells sup-
press T-cell activity and have poor antigen-presenting
capacity, promote proliferation through arginase, angio-
genesis and tissue repair (Figure 1), in contrast to classi-
cally activated type I or M1 macrophages that are able
to kill microorganisms and tumor cells [43]. The signals
that lead to the M2 polarization of TAM are not yet
completely understood, but IL-10 and TGFb might play
a role [44]. However, a transcriptome analysis of TAM
from a mouse fibrosarcoma showed an expression pro-
file of genes that appears to be mostly M2, but with
some M1 traits [45]. Sica and Bronte (2007) suggest that
a switch from the M1 to the M2 phenotype in TAM
might parallel the different interactions that take place
between tumor cells and macrophages during tumor
progression [46].
The contrasting effects of TAM are well exemplified

by the macrophage L-arginine metabolism. Macrophages
utilize L-arginine to synthesize nitric oxide (NO) with
the help of inducible NO synthase (iNOS), and to pro-
duce L-ornithine through arginase activity. While NO
may contribute to macrophage-driven tumoricidal activ-
ities, the polyamines derived from L-ornithine are essen-
tial nutrients for tumor cell proliferation [47]. Thus, the
balance between iNOS and arginase activity in TAMs
might be critical for tumor progression [48,49]. In addi-
tion, arginase can down-regulate NO production by
decreasing the intracellular arginine concentration, and
low concentrations of NO may act as part of a signalling

cascade for neovascularisation [50]. Thus, it was sug-
gested that NO can have pro- or anti-tumor actions,
depending on the local concentration of the molecule.
A tumor mass cannot grow beyond 2-3 mm3 in size

without angiogenesis. Neovascularization provides an
increased supply of nutrients and oxygen, and facilitates
the dissemination of tumor cells to distant organs. Most
solid tumors pass through two phases of growth: the
avascular phase and the vascular phase, when new capil-
laries penetrate the tumor and it begins to massively
grow and invade. Using transgenic mice susceptible to
mammary cancer, Lin et al. (2006) demonstrated that a
reduction of macrophage infiltration delayed the angio-
genic switch and the malignant transition of tumor cells
[51]. On the other hand, overexpression of CSF-1 in
wild-type mice that leads to an early induction of
macrophage infiltration into premalignant lesions
accompanied by neoangiogenesis, accelerates their tran-
sition to malignancy [52]. Vascular endothelial growth
factor (VEGF), a key player in the angiogenesis process,
is expressed by both tumor cells and TAM in several
histological types of human tumors [53]. In addition,
TAM-derived inflammatory cytokines (IL-1b, TNFa)
may stimulate tumor cells to enhance the production of
VEGF [54], and to produce angiogenin, a potent proan-
giogenic protein [55]. VEGF may become also available
in the tumor microenvironment through the release of
matrix metalloprotease-9 (MMP-9) by TAM [56].
Recently, Giordano et al. demonstrated that TAM are

the most important cell type producing semaphorin 4 D
within tumor stroma, a molecule required for angiogen-
esis and vessel maturation [57]. Therefore, TAM are cri-
tical in tumor angiogenesis, an essential step in tumor
progression and metastatic dissemination [58].

Figure 1 Some biological activities of polarized M2 macrophages.
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Moreover, using a intravital multiphoton microscopy,
Wyckoff et al. (2007) observed that tumor cell intravasa-
tion in mammary tumors occurs in association with
perivascular macrophages [59], and Ojalvo et al. (2010)
demonstrated that this subset of the macrophage popu-
lation is particularly enriched for molecules involved in
Wnt signaling [60].
Furthermore, tumor cells co-cultivated with macro-

phages display a higher invasiveness through a TNFa-
dependent MMP induction in macrophages [61]. Direct
evidence for the role of MMPs in tumor invasiveness
has been provided by many studies and cancer cells
might stimulate TAM to produce MMPs in a paracrine
manner through the secretion of various stimuli, such as
interleukins, growth factors and an extracellular matrix
metalloproteinase inducer (CD147). The invasiveness of
tumor cells is also stimulated by epidermal growth fac-
tor (EGF) synthesized by TAM in response to tumor-
derived CSF-1, leading to the induction of several genes
involved in the migration of tumor cells [62].
The leading edge of a tumor mass is the site where

TAM direct the invasion of tumor cells into host tissues.
With melanoma cells, we found that the areas of great-
est macrophage density were peritumoral [63,64], and
using a suitable in vitro model we demonstrated that
upon contact with melanoma cells, inflammatory macro-
phages express increased levels of COX-2 [64], uPAR
and MMP-9 [65]. It is also possible that MMPs secreted
by TAM can be recruited to cancer cell membranes,
and are then used as tools by the tumor cells to pro-
gress through a specific site [66]. Hiratsuka et al. (2002)
proved that MMP-9 expressed in alveolar endothelial
cells and macrophages renders the pulmonary metastatic
site fertile for secondary growth of malignant cells, a
mechanism dependent upon the activation of the VEGF-
VEGFR signaling cascade [67]. TAM also produce,
under the influence of tumor cells, the urokinase plas-
minongen activator (uPA) and receptor (uPAR), that
may cause degradation of ECM to promote invasion and
spread of tumor cells [68,69]. The uPA/uPAR system
does not only support the invasion of tumor cells, it
also modulates cell adhesion by interactions of uPAR
with vitronectin and integrins. Therefore, the uPA/
uPAR system is endowed with the structural and func-
tional properties required to promote most important
mechanisms of tumor cell migration [68,69].
Genetic experiments provide a causal link between

CSF-1-dependent TAM and malignancy in mammary
and lung cancer [70]. In particular, crossing transgenic
mice susceptible to mammary cancer and mice contain-
ing a recessive null mutation in the CSF-1 gene, Lin
et al. demonstrated that TAM are necessary for distant
organ colonization, the final step of metastatic dissemi-
nation [71].

In our laboratory, co-cultivation of tumor cells with
‘resident’ macrophages, responsive macrophages
obtained by the use of thioglycolate broth, or with ‘eli-
cited’ macrophages obtained by the use of specific infec-
tious agents (Corynebacterium parvum, BCG, Listeria
monocytogenes) enabled us to find that the number of
lung colonies detected in mice intravenously injected
with melanoma cells were greatly enhanced by co-culti-
vation of tumor cells with elicited, non-cytotoxic,
macrophages prior to injection (Figure 2) [72]. Among
the biological properties relevant to the metastatic diffu-
sion, tumor cells exposed to the macrophage-prometa-
static activity expressed increased invasiveness, an
enhanced capacity to adhere to endothelial cells and an
elevated ability to escape NK cells by increasing the
expression of MHC class I antigens [73]. This metastatic
ability of tumor cells as well as their increased invasive-
ness, adhesion and MHC expression was found to be
transient. Inflammatory cytokines, such as TNFa, con-
tribute to the pro-metastatic activity released by elicited
macrophages into their growth media [74].
Important recent studies suggest that macrophages are

recruited into the target organs and facilitate metastatic
cell seeding. Moreover, blocking macrophage lodgement
at the metastatic site limits the growth of metastatic
cells, even if metastatic lesions have readily been estab-
lished [75].
Thus, TAM are powerful tumor promoters, capable to

stimulate angiogenesis, invasiveness and subsequent
metastatic growth, but also able to set up the sites for
metastatic cell seeding.

Tumor cell - fibroblast interactions
Interactions between epithelial cells and stromal cells are
crucial in several aspects of normal development, such as
growth, differentiation and morphogenesis, but also in
pathological conditions, including tumorigenesis. A des-
moplastic or stromal reaction characterizes many inva-
sive carcinomas, for example those of the breast,
prostate, colon, lung and uterus, and several reports sug-
gest a poorer prognosis associated with carcinomas bear-
ing desmoplastic stroma [76,77]. In 1986, Dvorak
described the remarkable similarities between the reac-
tive tumor stroma and the granulation tissue present in
areas of inflammation and in tissue undergoing the remo-
delling phase of wound healing [78]. It was suggested that
granulation tissue stimulates tumor cell invasion. Dinge-
mans et al. tested this hypothesis and found that a granu-
lation tissue microenvironment, but not normal
subcutaneous stroma, elicited an invasive phenotype in
tumor cells [79]. The cascade of events leading to a gran-
ulation tissue is mainly supported by host fibroblasts, and
fibroblasts associated with wound healing as well as
reactive tumor stroma (so-called cancer-associated
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fibroblasts, CAF) are commonly identified by the expres-
sion of a-smooth muscle actin (a-SMA). This type of
cells was referred to by Gabbiani et al. as “myofibro-
blasts” [80]. Such myofibroblasts, sometimes also termed
“activated fibroblasts”, participate at all stages of tumor
progression. The agents that mediate the transition to
myofibroblasts are not yet fully elucidated. In cell culture,
myofibroblasts can be induced by transforming growth
factor-b (TGFb), either secreted by tumor cells or host
inflammatory cells [77,80]. Proteins of the extracellular
matrix produced by stromal cells with myofibroblastic
differentiation could act as a barrier against immune cells
and may regulate tumor cell behaviour by facilitating cell
contacts, motility or transport of nutrients. Moreover
myofibroblasts secrete proteins which may stimulate
tumor cell invasiveness, angiogenesis and tissue remodel-
ling [81] (Figure 3). Tumor growth and metastasis is sig-
nificantly reduced in fibroblast-deficient mice, and
injection of wild-type fibroblasts into these mice partially
reversed the observed phenotype, providing further evi-
dence for the involvement of fibroblasts in the emergence
of metastasis.
Regarding secreted factors that affect tumor cell inva-

siveness, myofibroblasts are a source of extracellular
matrix-degrading proteases such as the MMPs. In

particular, MMP-3, also known as stromelysin 1, is
highly expressed in fibroblasts/myofibroblasts and parti-
cipates in the cleavage of E-cadherin, thereby prompting
epithelial cancer cells to perform an epithelial-mesench-
ymal transition (EMT) [82]. Cancer cells undergoing
EMT loose cell-cell contacts, acquire mesenchymal
properties and develop invasive and migratory abilities.
Consequently, EMT of cancer cells is recognized as an
important determinant of tumor progression [83].
By injecting tumor cell/fibroblast cell suspension into

immunodeficent mice, Orimo et al. found that CAF iso-
lated from a human breast carcinoma and expressing a
myofibroblast phenotype, promote the growth of carci-
noma cells through a stromal cell-derived factor-1
[SDF-1]/CXCR4-dependent mechanism. These CAF did
not show aneuploidy or in vivo tumorigenic activity
[84]. Moreover, mammary carcinoma-associated fibro-
blasts stimulate a high vasculature by recruiting
endothelial progenitor cells in tumor xenografts. Thus,
SDF-1 secreted by mammary myofibroblasts may stimu-
late the growth of CXCR4-expressing carcinoma cells as
well as angiogenesis [84]. A genome analysis of the
stroma of an elevated number of invasive breast carci-
noma indicates that the hot spots for mutations in the
stroma are not the same as those identified in the

Figure 2 Change in lung-colonizing potential of B16 murine melanoma cells upon stimulation by TAM. Surface colonies (A, B) and H&E-
stained sections (C, D) of lungs collected from syngeneic animals injected with un-stimulated melanoma cells (A, C) or tumor cells stimulated by
macrophages (B, D). See the high number of metastatic lesions in lungs from animal injected with macrophage-promoted tumor cells.
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epithelium [85]. Therefore, it is possible that an inde-
pendent pathway of mutation of gene expression works
in stromal cells. Recently, Studebaker et al. showed that
IL-6 secreted by CAF enhances the growth and invasive-
ness of estrogen receptor a-positive breast carcinoma
cells through its effectors, Notch-3, Jagged-1 and carbo-
nic anhydrase IX [86].
Moreover, using an in vitro model of skin

carcinogenesis, Cat et al. [87] demonstrated that
tumor cell-derived TGF-b stimulates reactive oxygen
species-dependent expression of a-SMA in skin fibro-
blasts, and their differentiation into myofibroblasts.
This was associated with an increased release of hepa-
tocyte growth factor (HGF), VEGF and IL-6. In view of
the notion that skin fibroblasts possess a reduced capa-
city to secrete IL-6, while senescent fibroblasts strongly
up-regulate IL-6 and stimulate malignancy in epithelial
cells [88], it was suggested that CAF may represent a
subset of senescent fibroblasts. Importantly, a very
recent report demonstrates that CAF isolated from
dysplastic skin and skin carcinoma express a NF-
�B-dependent proinflammatory gene signature respon-
sible for macrophage recruitment, neovascularisation,
cancer cell proliferation and invasion. This was also
manifest in CAF of mouse and human mammary and
pancreatic tumors [89].
These mesenchymal-epithelial instructive interactions

are also responsible for the integrity of the prostate
gland. Now, we know that alterations in the complex
relationship between prostate epithelial cells and stro-
mal cells contribute to the genomic instability that may
promote the progression to a malignant state of these

epithelial cells [90]. Some evidence indicates that
normal stromal fibroblasts from the fetal urogenital
sinus inhibits the in vivo growth of prostate tumor cells,
when both cell types are inoculated together. In
contrast cancer-associated stromal cells co-inoculated
with prostate cancer cells promote tumor growth
in vivo [91]. In Figure 4, tissue sections of reactive
stroma around and within a tumor mass are shown that
were obtained by the co-injection of prostate adenocar-
cinoma cells (PC3 cells) and prostate adenocarcinoma-
associated fibroblasts into immunodeficient mice.
Tumor cells are surrounded by a collagenous stroma
particularly enriched in inflammatory cells and new
microvessels (A), while collagen fibrils within the tumor
are characteristically oriented, in order to sustain the
local growth of tumor cells (B). Tuxhorn et al. have
provided some additional evidence that prostate cancer
epithelium stimulates CAF to express vimentin, a-
smooth muscle actin and calponin, which is characteris-
tic of the myofibroblast phenotype [92]. Interestingly,
initiated non-tumorigenic prostate epithelial cells co-
implanted with CAF formed tumors in immunodeficient
mice, while CAF do not affect growth of normal human
prostate epithelial cells [93].
It is possible that the most important feature in pro-

gression of prostate tumors is the ability of tumor cells
to stimulate stromal cells to release biological agents
for their growth and dissemination. Mutual interac-
tions between carcinoma cells and CAF were reported
by Nakamura et al.: tumoral IL-1, basic fibroblast
growth factor (bFGF) and platelet-derived growth fac-
tor (PDGF) stimulate HGF expression in CAF, and in

Figure 3 Some biological activities of CAF.
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turn, stromal HGF leads to an invasive phenotype in
carcinoma cells [94]. Hill et al., using a mouse model
of prostate carcinoma, showed that tumor cells upre-
gulate p53 in stromal fibroblasts, a process found to
induce a selection of a subpopulation of p53 null fibro-
blasts. In turn, selection of a p53 null subpopulation of
stromal fibroblasts contributed to the progression of
carcinoma cells [95].
The origins of CAF were revised by Orimo and Wein-

berg, who suggested three major alternative hypotheses:
a) genetic alteration, b) an activation without genetic
alteration of normal tissue fibroblasts, and c) the activa-
tion of bone marrow-derived mesenchymal stem cells
(MSC) [96]. MSC infiltrate wounds and tumors in high
numbers, and, when co-injected into immunodeficient
hosts together with weakly metastatic human breast car-
cinoma cells, they induced in these cancer cells an
increase in metastatic potential by a CCL5/CCR5-depen-
dent mechanism [97].
Despite these initial findings, additional efforts at

determining the molecular mechanisms that lead to the
appearance of differentiated fibroblasts and their multi-
ple contributions in tumor progression are still urgently
required.

Conclusions
Tumor stroma is a specialized form of tissue composed
of host cells and signals of different origin, which is
associated with tumor cell growth, primarily of epithelial
origin. Tumor stroma possesses unique structural
features that differ from the native stroma. It is also
characterised by a great degree of tumor dependency
(”There is no tumor stroma without a tumor“) and dis-
plays a substantial degree of plasticity, with the specific
outcomes controlled by tumor cells themselves. Indeed,
tumor cells do not only display heterogeneity and
induce the expression of signaling molecules that favour
their survival and invasiveness into local and distant
host tissues, but also influence host stromal elements to
produce relevant effectors that act as tumor promoters.
Moreover, tumor cell-derived signals recruit and activate
some host cells, among which monocytes/macrophages
and fibroblasts are the most abundant population within
the tumor microenvironment. As was discussed above,
both types of cells, macrophages and fibroblasts, are
involved in a intricate liaison with tumor cells, that
usually leads to tumor progression and activation of the
metastatic cascade. Thus, the investigation of the
mechanisms that allow macrophages and fibroblasts to

Figure 4 Stromal organization of a subcutaneous tumor obtained by the co-injection of prostate carcinoma cells (PC3 cells) and
“prostate-activated fibroblasts”. A desmoplastic response surrounding tumor cells rich in a neovasculature (A); and some tumor cells in a
large capillary enclosed in a dense collagenous stroma infiltrated by inflammatory cells (B) (Mallory’s trichrome). Dense collagen fibers and fine
reticular collagen bundles inside the tumor mass (C) and a high magnification of reticulin fibers within the tumor mass (D) (Gomori’s method).
(Bar 50 μm).
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contribute to tumor progression, could lead to new
approaches for the anti-cancer therapies that are
urgently required.

Acknowledgements
This study was funded by grants from Progetto di Ricerca di Ateneo Quota
ex-60%, Istituto Toscano Tumori, Ente Cassa di Risparmio di Firenze and
Lucca. The authors wish to thank Eugenio Torre for his valuable assistance in
the preparation of histology slides and the CCS staff for editorial support.

Authors’ contributions
Both authors contributed to the writing, the conceptual design and the
preparation of the figures of this review, and they have read and approved
the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 17 May 2010 Accepted: 7 September 2010
Published: 7 September 2010

References
1. Gupta GP, Massague J: Cancer metastasis: building a framework. Cell

2006, 127:679-695.
2. Sahai E: Illuminating the metastatic process. Nat Rev Cancer 2007,

7:737-749.
3. Nguyen DX, Bos PD, Massagué J: Metastasis: from dissemination to organ-

specific colonization. Nat Rev Cancer 2009, 9:274-284.
4. Heppner GH, Miller FR: The cellular basis of tumor progression. Int Rev

Cytol 1998, 177:1-56.
5. Fidler IJ: Tumor heterogeneity and the biology of cancer invasion and

metastasis. Cancer Res 1978, 38:2651-2660.
6. Foulds L: The experimental study of tumor progression: a review. Cancer

Res 1954, 14:327-339.
7. Nicolson GL: Tumor progression, oncogenes and the evolution of

metastatic phenotypic diversity. Clin Exp Metastasis 1984, 2:85-105.
8. Miller FR, Heppner GH: Cellular interactions in metastasis. Cancer

Metastasis Rev 1990, 9:21-34.
9. Witz IP: Tumor-microenvironment interactions: dangerous liaisons. Adv

Cancer Res 2008, 100:203-29.
10. Rose DP, Connolly JM, Meschter CL: Effect of dietary fat on human breast

cancer growth and lung metastasis in nude mice. J Natl Cancer Inst 1991,
83:1491-1495.

11. Rose DP, Connolly JM, Liu XH: Effects of linoleic acid on the growth and
metastasis of two human breast cancer cell lines in nude mice and the
invasive capacity of these cell lines in vitro. Cancer Res 1994,
54:6557-6562.

12. Mannini A, Calzolari A, Calorini L, Mugnai G, Ruggieri S: The inhibition of
lung colonization of B16-F10 melanoma cells in EFA-deficient animals is
related to enhanced apoptosis and reduced angiogenesis. Clin Exp
Metastasis 2006, 23:1591-65.

13. Bingham S, Riboli E: Diet and cancer - the European Prospective
Investigation into Cancer and Nutrition. Nat Rev Cancer 2004, 4:3:206-215.

14. Giraldi T, Perissin L, Zorzet S, Rapozzi V: Metastasis and neuroendocrine
system in stressed mice. Ann N Y Acad Sc 1992, 650:297-301.

15. Coussens LM, Werb Z: Inflammation and cancer. Nature 2002, 420:860-867.
16. Robinson SC, Coussens LM: Soluble mediators of inflammation during

tumor development. Adv Cancer Res 2005, 93:159-187.
17. Mantovani A, Allavena P, Sica A, Balkwill F: Cancer-related inflammation.

Nature 2008, 454:436-44.
18. Gasic GJ: Role of plasma, platelets and endothelial cells in tumor

metastasis. Cancer Metastasis Rev 1986, 3:99-116.
19. de Visser KE, Korets LV, Coussens LM: De novo carcinogenesis promoted

by chronic inflammation is B lymphocyte dependent. Cancer Cell 2005,
7:411-423.

20. Di Carlo E, Forni G, Lollini P, Colombo MP, Modesti A, Musiani P: The
intriguing role of polymorphonuclear neutrophils in antitumor reactions.
Blood 2001, 97:339-345.

21. De Larco JE, Wuertz BR, Furcht LT: The potential role of neutrophils in
promoting the metastatic phenotype of tumors releasing interleukin-8.
Clin Cancer Res 2004, 10:4895-4900.

22. Silzle T, Randolph GJ, Kreutz M, Kunz-Schughart LA: The fibroblast: sentinel
cell and local immune modulator in tumor tissue. Int J Cancer 2004,
108:173-180.

23. Kalluri R, Zeisberg M: Fibroblasts in cancer. Nat Rev Cancer 2006, 6:392-401.
24. Shimoda Masayuki, Mellodyb TKieran, Orimo Akira: Carcinoma-associated

fibroblasts are a rate-limiting determinant for tumour progression. Semin
Cell Dev Biol 2010, 21:19-25.

25. Grégoire M, Lieubeau B: The role of fibroblasts in tumor behaviour.
Cancer Metastasis Rev 1995, 14:339-350.

26. Qian BZ, Pollard JW: Macrophage diversity enhances tumor progression
and metastasis. Cell 2010, 141:39-51.

27. Mantovani A: La mala educación of tumor-associated macrophages:
Diverse pathways and new players. Cancer Cell 2010, 17:111-112.

28. Rubin H: Contact interactions between cells that suppress neoplastic
development: can they also explain metastatic dormancy? Adv Cancer
Res 2008, 100:159-202.

29. Aguirre-Ghiso JA: Models, mechanisms and clinical evidence for cancer
dormancy. Nat Rev Cancer 2007, 7:834-846.

30. Nicolson GL: Cancer progression and growth: relationship of paracrine
and autocrine growth mechanisms to organ preference of metastasis.
Exp Cell Res 1993, 204:171-80.

31. Normann SJ: Macrophage infiltration and tumor progression. Cancer
Metastasis Rev 1985, 4:277-291.

32. Bugelski PJ, Corwin SP, North SM, Kirsh RL, Nicolson GL, Poste G:
Macrophage content of spontaneous metastases at different stages of
growth. Cancer Res 1987, , 47: 4141-4145.

33. Nowicki A, Szenajch J, Ostrowska G, Wojtowicz A, Wojtowicz K,
Kruszewski AA, Maruszynski M, Aukerman SL, Wiktor-Jedrzejczak W:
Impaired tumor growth in colony-stimulating factor 1 (CSF-1)-deficient,
macrophage-deficient op/op mouse: evidence for a role of CSF-1-
dependent macrophages in formation of tumor stroma. Int J Cancer
1996, 65:112-119.

34. Lin EY, Nguyen AV, Russel RG, Pollard JW: Colony-stimulating factor
promotes progression of mammary tumors to malignancy. J Exp Med
2001, 193:727-740.

35. Mantovani A, Allavena P, Sozzani S, Vecchi A, Locati M, Sica A: Chemokines
in the recruitment and shaping of the leukocyte infiltrate of tumors.
Semin Cancer Biol 2004, 14:155-160.

36. Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marmé D: Migration
of human monocytes in response to vascular endothelial growth factor
(VEGF) is mediated via the VEGF receptor flt-1. Blood 1996, 87:3336-3343.

37. Lin EY, Gouon-Evans V, Nguyen AV, Pollard JW: The macrophage growth
factor CSF-1 in mammary gland development and tumor progression.
J Mammary Gland Biol Neoplasia 2002, 7:147-162.

38. Murdoch C, Giannoudis A, Lewis CE: Mechanisms regulating the
recruitment of macrophages into hypoxic areas of tumors and other
ischemic tissues. Blood 2004, 104:2224-2234.

39. Chan DA, Giaccia AJ: Hypoxia, gene expression, and metastasis. Cancer
Metastasis Rev 2007, 26:333-339.

40. Keith B, Simon MC: Hypoxia-inducible factors, stem cells, and cancer. Cell
2007, 129:465-472.

41. Fidler IJ, Schroit AJ: Recognition and destruction of neoplastic cells by
activated macrophages: discrimination of altered self. Biochim Biophys
Acta 1998, 948:151-73.

42. Gordon S, Taylor PR: Monocyte and macrophage heterogeneity. Nat Rev
Immunol 2005, 5:953-964.

43. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A: Macrophage
polarization:tumor-associated macrophages as a paradigm for polarized
M2 mononuclear phagocytes. Trends Immunol 2002, 23:549-555.

44. Allavena P, Sica A, Garlanda C, Mantovani A: The Yin-Yang of tumor-
associated macrophages in neoplastic progression and immune
surveillance. Immunol Rev 2008, 222:155-161.

45. Biswas SK, Gangi L, Paul S, Schioppa T, Saccani A, Sironi M, Bottazzi B,
Doni A, Vincenzo B, Pasqualini F, Vago L, Nebuloni M, Mantovani A, Sica A:
A distinct and unique transcriptional program expressed by tumor-
associated macrophages (defective NF-kappaB and enhanced IRF-3/
STAT1 activation). Blood 2006, 107:2112-2122.

Calorini and Bianchini Cell Communication and Signaling 2010, 8:24
http://www.biosignaling.com/content/8/1/24

Page 8 of 10

http://www.ncbi.nlm.nih.gov/pubmed/17110329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17891189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19308067?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19308067?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9378615?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/354778?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/354778?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/13160960?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6543697?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6543697?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2208566?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18620097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1920496?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1920496?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7987856?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7987856?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7987856?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12490959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15797447?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15797447?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18650914?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15894262?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15894262?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11154206?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11154206?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15297389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15297389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14639599?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14639599?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16572188?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19857592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19857592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8821094?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20371344?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20371344?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20159603?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20159603?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18620096?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18620096?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17957189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17957189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8382620?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8382620?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3907821?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3300960?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3300960?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8543387?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8543387?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8543387?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11257139?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11257139?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15246050?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15246050?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8605350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8605350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8605350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12465600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12465600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15231578?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15231578?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15231578?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17458506?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17482542?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16322748?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12401408?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12401408?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12401408?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18364000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18364000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18364000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16269622?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16269622?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16269622?dopt=Abstract


46. Sica A, Bronte V: Altered macrophage differentiation and immune
dysfunction in tumor development. J Clin Invest 2007, 117:1155-1166.

47. Auvinen M, Paasinen A, Andersson LC, Holtta E: Ornithine decarboxylase
activity is critical for cell transformation. Nature 1992, 360:355-358.

48. Mills CD, Shearer J, Evans R, Caldwell MD: Macrophage arginine
metabolism and the inhibition or stimulation of cancer. J Immunol 1992,
149:2709-2714.

49. Chang CI, Liao JC, Kuo L: Macrophage arginase promotes tumor cell
growth and suppresses nitric oxide-mediated tumor cytotoxicity. Cancer
Res 2001, 61:1100-1106.

50. Fukumura D, Jain RK: Role of nitric oxide in angiogenesis and
microcirculation in tumors. Cancer Metastasis Rev 1998, 17:77-89.

51. Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, Qian H, Xue XN,
Pollard JW: Macrophages regulate the angiogenic switch in a mouse
model of breast cancer. Cancer Res 2006, 66:11238-11246.

52. Lin EY, Pollard JW: Tumor-associated macrophages press the angiogenic
switch in breast cancer. Cancer Res 2007, 67:5064-6.

53. Leek RD, Harris AL, Lewis CE: Cytokine networks in solid human tumors:
regulation of angiogenesis. J Leukoc Biol 1994, 56:423-35.

54. Torisu H, Ono M, Kiryu H, Furue M, Ohmoto Y, Nakayama J, Nishioka Y,
Sone S, Kuwano M: Macrophage infiltration correlates with tumor stage
and angiogenesis in human malignant melanoma: possible involvement
of TNFalpha and IL-1alpha. Int J Cancer 2000, 85:182-8.

55. Etoh T, Shibuta K, Barnard GF, Kitano S, Mori M: Angiogenin expression in
human colorectal cancer: the role of focal macrophage infiltration. Clin
Cancer Re 2000, 6:3545-51.

56. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K,
Thorpe P, Itohara S, Werb Z, Hanahan D: Matrix metalloproteinase-9
triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000,
2:737-44.

57. Sierra JR, Corso S, Caione L, Cepero V, Conrotto P, Cignetti A, Piacibello W,
Kumanogoh A, Kikutani H, Comoglio PM, Tamagnone L, Giordano S: Tumor
angiogenesis and progression are enhanced by Sema4 D produced by
tumor-associated macrophages. J Exp Med 2008, 205:1673-1685.

58. Carmeliet P, Jain RK: Angiogenesis in cancer and other diseases. Nature
2000, 407:249-257.

59. Wyckoff JB, Wang Y, Lin EY, Li JF, Goswami S, Stanley ER, Segall JE,
Pollard JW, Condeelis J: Direct visualization of macrophage-assisted
tumor cell intravasation in mammary tumors. Cancer Res 2007,
67:2649-2656.

60. Ojalvo LS, Whittaker CA, Condeelis JS, Pollard JW: Gene expression analysis
of macrophages that facilitate tumor invasion supports a role for Wnt-
signaling in mediating their activity in primary mammary tumors. J
Immunol 2010, 184:702-712.

61. Pollard JW: Tumour-educated macrophages promote tumour progression
and metastasis. Nat Rev Cancer 2004, 4:71-78.

62. Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, Stanley ER,
Segall JE, Condeelis JS: Macrophages promote the invasion of breast
carcinoma cells via a colony-stimulating factor-1/epidermal growth
factor paracrine loop. Cancer Res 2005, 65:5278-5283.

63. Massi D, Marconi C, Franchi A, Bianchini F, Paglierani M, Ketabchi S,
Miracco C, Santucci M, Calorini L: Arginine metabolism in tumor-
associated macrophages in cutaneous malignant melanoma:
evidence from human and experimental tumors. Hum Pathol 2007,
38:1516-1525.

64. Bianchini F, Massi D, Marconi C, Franchi A, Baroni G, Santucci M, Mannini A,
Mugnai G, Calorini L: Expression of cyclo-oxygenase-2 in macrophages
associated with cutaneous melanoma at different stages of progression.
Prostaglandins Other Lipid Mediat 2007, 83:320-328.

65. Bianchini F, D’Alessio S, Fibbi G, Del Rosso M, Calorini L: Cytokine-
dependent invasiveness in B16 murine melanoma cells: role of uPA
system and MMP-9. Oncol Rep 2006, 15:709-714.

66. Egeblad M, Werb Z: New functions for the matrix metalloproteinases in
cancer progression. Nat Rev Cancer 2002, 2:161-174.

67. Hiratsuka S, Nakamura K, Iwai S, Murakami M, Itoh T, Kijima H, Shipley JM,
Senior RM, Shibuya M: MMP9 induction by vascular endothelial growth
factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2002,
2:289-300.

68. Del Rosso M, Fibbi G, Pucci M, D’Alessio S, Del Rosso A, Magnelli L,
Chiarugi V: Multiple pathways of cell invasion are regulated by multiple
families of serine proteases. Clin Exp Metastasis 2002, 19:193-207.

69. Sidenius N, Blasi F: The urokinase plasminogen activator system in
cancer: recent advances and implication for prognosis and therapy.
Cancer Metastasis Rev 2003, 22:205-222.

70. Lin EY, Nguyen AV, Russell RG, Pollard JW: Colony-stimulating factor 1
promotes progression of mammary tumors to malignancy. J Exp Med
2001, 193:727-740.

71. Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ, Pollard JW:
Progression to malignancy in the polyoma middle T oncoprotein mouse
breast cancer model provides a reliable model for human diseases. Am J
Pathol 2003, 163:2113-2126.

72. Cecconi O, Calorini L, Mannini A, Mugnai G, Ruggieri S: Enhancement of
lung-colonizing potential of murine tumor cell lines co-cultivated with
activated macrophages. Clin Exp Metastasis 1997, 15:94-101.

73. Calorini L, Mannini A, Bianchini F, Mugnai G, Balzi M, Becciolini A,
Ruggieri S: Biological properties associated with the enhanced lung-
colonizing potential in a B16 murine melanoma line grown in a medium
conditioned by syngeneic Corynebacterium parvum-elicited
macrophages. Clin Exp Metastasis 1999, 17:889-895.

74. Calorini L, Bianchini F, Mannini A, Mugnai G, Balzi M, Becciolini A,
Ruggieri S: IFN gamma and TNF alpha account for a pro-clonogenic
activity secreted by activated murine peritoneal macrophages. Clin Exp
Metastasis 2002, 19:259-264.

75. Qian B, Deng Y, Im JH, Muschel RJ, Zou Y, Li J, Lang RA, Pollard JW: A
distinct macrophage population mediates metastatic breast cancer cell
extravasation, establishment and growth. PLoS One 2009, 4:e6562.

76. Micke P, Ostman A: Tumour-stroma interaction: cancer-associated
fibroblasts as novel targets in anti-cancer therapy? Lung Cancer 2004,
45(Suppl 2):S163-75.

77. Kalluri R, Zeisberg M: Fibroblasts in cancer. Nat Rev Cancer 2006, 6:392-401.
78. Dvorak HF: Tumors: wounds that do not heal. Similarities between tumor

stroma generation and wound healing. N Engl J Med 1986, 315:1650-1659.
79. Dingemans KP, Zeeman-Boeschoten IM, Keep RF, Das PK: Transplantation

of colon carcinoma into granulation tissue induces an invasive
morphotype. Int J Cancer 1993, 54:1010-1016.

80. Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G:
The myofibroblast: one function, multiple origins. Am J Pathol 2007,
170:1807-1816.

81. Shimoda M, Mellody KT, Orimo A: Carcinoma-associated fibroblasts are a
rate-limiting determinant for tumour progression. Semin Cell Dev Biol
2010, 21:19-25.

82. Lochter A, Galosy S, Muschler J, Freedman N, Werb Z, Bissell MJ: Matrix
metalloproteinase stromelysin-1 triggers a cascade of molecular
alterations that leads to stable epithelial-to-mesenchymal conversion
and a premalignant phenotype in mammary epithelial cells. J Cell Biol
1997, 139:1861-1872.

83. Polyak K, Weinberg RA: Transitions between epithelial and mesenchymal
states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009,
9:265-273.

84. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R,
Carey VJ, Richardson AL, Weinberg RA: Stromal fibroblasts present in
invasive human breast carcinomas promote tumor growth and
angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005,
121:335-348.

85. Fukino K, Shen L, Matsumoto S, Morrison CD, Mutter GL, Eng C: Combined
total genome loss of heterozygosity scan of breast cancer stroma and
epithelium reveals multiplicity of stromal targets. Cancer Res 2004,
64:7231-7236.

86. Studebaker AW, Storci G, Werbeck JL, Sansone P, Sasser AK, Tavolari S,
Huang T, Chan MW, Marini FC, Rosol TJ, Bonafé M, Hall BM: Fibroblasts
isolated from common sites of breast cancer metastasis enhance cancer
cell growth rates and invasiveness in an interleukin-6-dependent
manner. Cancer Res 2008, 68:9087-9095.

87. Cat B, Stuhlmann D, Steinbrenner H, Alili L, Holtkötter O, Sies H,
Brenneisen P: Enhancement of tumor invasion depends on
transdifferentiation of skin fibroblasts mediated by reactive oxygen
species. J Cell Sci 2006, 119:2727-38.

88. Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J: Senescent
fibroblasts promote epithelial cell growth and tumorigenesis: a link
between cancer and aging. Proc Natl Acad Sci USA 2001, 98:12072-12077.

89. Erez N, Truitt M, Olson P, Hanahan D: Cancer-Associated Fibroblasts are
activated in incipient neoplasia to orchestrate tumor-promoting

Calorini and Bianchini Cell Communication and Signaling 2010, 8:24
http://www.biosignaling.com/content/8/1/24

Page 9 of 10

http://www.ncbi.nlm.nih.gov/pubmed/17476345?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17476345?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1280331?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1280331?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1401910?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1401910?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11221839?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11221839?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9544424?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9544424?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17114237?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17114237?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17545580?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17545580?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7523556?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7523556?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10629075?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10629075?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10629075?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11025665?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11025665?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18559453?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18559453?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18559453?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11001068?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17363585?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17363585?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20018620?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20018620?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20018620?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14708027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14708027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15958574?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15958574?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15958574?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17640716?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17640716?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17640716?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17499752?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17499752?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16465434?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16465434?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16465434?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11990853?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11990853?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12398893?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12398893?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12067200?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12067200?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12784997?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12784997?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11257139?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11257139?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14578209?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14578209?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9062385?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9062385?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9062385?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11089888?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11089888?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11089888?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11089888?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12067206?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12067206?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19668347?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19668347?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19668347?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15552797?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15552797?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16572188?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3537791?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3537791?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8335394?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8335394?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8335394?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17525249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19857592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19857592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9412478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9412478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9412478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9412478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19262571?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19262571?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15882617?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15882617?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15882617?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15492239?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15492239?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15492239?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18974155?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18974155?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18974155?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18974155?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16757516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16757516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16757516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11593017?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11593017?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11593017?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20138012?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20138012?dopt=Abstract


inflammation in an NF-kappaB-dependent manner. Cancer Cell 2010,
17:135-47.

90. Chung LW, Baseman A, Assikis V, Zhau HE: Molecular insights into
prostate cancer progression: the missing link of tumor
microenvironment. J Urol 2005, 173:10-20.

91. Chung LW, Chang SM, Bell C, Zhau HE, Ro JY, von Eschenbach AC: Co-
inoculation of tumorigenic rat prostate mesenchymal cells with non-
tumorigenic epithelial cells results in the development of
carcinosarcoma in syngeneic and athymic animals. Int J Cancer 1989,
43:1179-1187.

92. Tuxhorn JA, Ayala GE, Smith MJ, Smith VC, Dang TD, Rowley DR: Reactive
stroma in human prostate cancer: induction of myofibroblast phenotype
and extracellular matrix remodeling. Clin Cancer Res 2002, 8:2912-2923.

93. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR:
Carcinoma-associated fibroblasts direct tumor progression of initiated
human prostatic epithelium. Cancer Res 1999, 59:5002-5011.

94. Nakamura T, Matsumoto K, Kiritoshi A, Tano Y, Nakamura T: Induction of
hepatocyte growth factor in fibroblasts by tumor-derived factors affects
invasive growth of tumor cells: in vitro analysis of tumor-stromal
interactions. Cancer Res 1997, 57:3305-3313.

95. Hill R, Song Y, Cardiff RD, Van Dyke T: Selective evolution of stromal
mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell
2005, 123:1001-1011.

96. Orimo A, Weinberg RA: Heterogeneity of stromal fibroblasts in tumors.
Cancer Biol Ther 2007, 6:618-619.

97. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW,
Richardson AL, Polyak K, Tubo R, Weinberg RA: Mesenchymal stem cells
within tumour stroma promote breast cancer metastasis. Nature 2007,
449:557-63.

doi:10.1186/1478-811X-8-24
Cite this article as: Calorini and Bianchini: Environmental control of
invasiveness and metastatic dissemination of tumor cells: the role of
tumor cell-host cell interactions. Cell Communication and Signaling 2010
8:24.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Calorini and Bianchini Cell Communication and Signaling 2010, 8:24
http://www.biosignaling.com/content/8/1/24

Page 10 of 10

http://www.ncbi.nlm.nih.gov/pubmed/20138012?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15592017?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15592017?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15592017?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2732007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2732007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2732007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2732007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12231536?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12231536?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12231536?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10519415?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10519415?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9242465?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9242465?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9242465?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9242465?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16360031?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16360031?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18027438?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17914389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17914389?dopt=Abstract

	Abstract
	Cancer as a non-homogeneous mass
	Tumor cell - macrophage interactions
	Tumor cell - fibroblast interactions
	Conclusions
	Acknowledgements
	Authors' contributions
	Competing interests
	References

