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Abstract

RNA-binding proteins play a key role in the regulation of all aspects of RNA metabolism, from the synthesis of RNA
to its decay. Protein-RNA interactions have been thought to be mostly mediated by canonical RNA-binding
domains that form stable secondary and tertiary structures. However, a number of pioneering studies over the past
decades, together with recent proteome-wide data, have challenged this view, revealing surprising roles for
intrinsically disordered protein regions in RNA binding. Here, we discuss how disordered protein regions can
mediate protein-RNA interactions, conceptually grouping these regions into RS-rich, RG-rich, and other basic
sequences, that can mediate both specific and non-specific interactions with RNA. Disordered regions can also
influence RNA metabolism through protein aggregation and hydrogel formation. Importantly, protein-RNA
interactions mediated by disordered regions can influence nearly all aspects of co- and post-transcriptional RNA
processes and, consequently, their disruption can cause disease. Despite growing interest in disordered protein
regions and their roles in RNA biology, their mechanisms of binding, regulation, and physiological consequences
remain poorly understood. In the coming years, the study of these unorthodox interactions will yield important
insights into RNA regulation in cellular homeostasis and disease.

Keywords: RNA-binding protein, Intrinsically disordered protein, Co- and post-transcriptional RNA regulation, RS
repeat, RGG-box, GAR repeat, Basic patch, Poly-K patch, Arginine-rich motif, RNA granule

Plain English summary
DNA is well known as the molecule that stores genetic
information. RNA, a close chemical cousin of DNA, acts
as a molecular messenger to execute a set of genetic
instructions (genes) encoded in the DNA, which come
to life when genes are activated. First, the genetic infor-
mation stored in DNA has to be copied, or transcribed,
into RNA in the cell nucleus and then the information
contained in RNA must be interpreted in the cytoplasm
to build proteins through a process known as transla-
tion. Rather than being a simple process, the path from
transcription to translation entails many steps of regula-
tion that make crucial contributions to accurate gene
control. This regulation is in large part orchestrated by
proteins that bind to RNA and alter its localisation,
structure, stability, and translational efficiency. The
current paradigm of RNA-binding protein function is
that they contain regions, or domains, that fold tightly
into an ordered interaction platform that specifies how
and where the interaction with RNA will occur. In this

review, we describe how this paradigm has been chal-
lenged by studies showing that other, hitherto neglected
regions in RNA-binding proteins, which in spite of being
intrinsically disordered, can play key functional roles in
protein-RNA interactions. Proteins harbouring such dis-
ordered regions are involved in virtually every step of
RNA regulation and, in some instances, have been impli-
cated in disease. Based on exciting recent discoveries
that indicate their unexpectedly pervasive role in RNA
binding, we propose that the systematic study of disor-
dered regions within RNA-binding proteins will shed
light on poorly understood aspects of RNA biology and
their implications in health and disease.

Background
Structural requirements for RNA-protein interactions
RNA-binding proteins (RBPs) assemble with RNA into
dynamic ribonucleoprotein (RNP) complexes that mediate
all aspects of RNA metabolism [1, 2]. Due to the promin-
ent role that RBPs play in RNA biology, it is not surprising
that mutations in these proteins cause major diseases, in
particular neurological disorders, muscular atrophies and
cancer [3–7]. Until recently, our understanding of how
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RBPs interact with RNA was based on a limited number
of globular RNA-binding domains (RBDs), which include
RNA-recognition motif (RRM), K-homology domain
(KH), double-stranded RBD (dsRBD), zinc fingers (Znf),
DEAD box helicase domain, and others (for recent re-
views, see [8–10]). Each of these RBDs interacts with
RNA following distinct mechanisms and differ in specifi-
city and affinity for their target RNA. Promiscuous RNA
binding is often mediated by interactions with the
phosphate-sugar backbone, whereas sequence-specificity
builds on interactions with the nucleotide base and shape
complementarity between protein and RNA interfaces.
While the most common RBDs interact with short
(4–8 nt) sequences, others display lower or complete
lack of sequence selectivity, recognising either the RNA
molecule itself or secondary and three-dimensional struc-
tures [8, 11]. As the affinity and specificity of a single RBD
is often insufficient to provide selective binding in vivo,
RBPs typically have a modular architecture containing
multiple RNA-interacting regions [8]. RNA-binding pro-
teins are typically conserved, abundant, and ubiquitously
expressed, reflecting the core importance of RNA metab-
olism in cellular physiology [12, 13].

The coming of age for RNA-binding proteins — the
emerging role of protein disorder
Early on, it was recognised that not all RNA-binding
activities could be attributed to classical RBDs. Compu-
tational predictions based on transcriptome complexity
suggested that 3-11 % of a given proteome should be
dedicated to RNA binding, whereas only a fraction of
this number could be identified by homology-based
searches for classical RBDs [14, 15]. Moreover, there
were several reports of RNA-binding activities within
protein domains lacking similarities to any classical RBD
[16, 17]. A number of studies showed that intrinsically
disordered regions, lacking any stable tertiary structure
in their native state, could contribute to RNA binding.
For example, the flexible linker regions that separate the
two RRMs of the poly(A)-binding protein (PABP) and
polypyrimidine tract binding protein 1 (PTBP1), not only
orientate the domains with respect each other, but also
mediate RNA binding [18]. Flexible regions in RBPs rich
in serine and arginine (S/R) and arginine and glycine (R/
G) were found to contribute, or even to account for,
RNA-binding activities [19, 20]. Furthermore, early com-
putational analyses revealed that proteins involved in
transcription and RNAs processing are enriched in dis-
ordered protein regions [21, 22], hinting on a broader
role for protein disorder in RNA metabolism.
Recently, the development of proteome-wide ap-

proaches for comprehensive determination of the RBP
repertoire within the cell (RBPome) has substantially in-
creased the number of known unorthodox RBPs. In vitro

studies in yeast identified dozens of proteins lacking
classical RBDs as putative RBPs, including metabolic en-
zymes and DNA-binding proteins [23, 24]. Two recent
studies that employed in vivo UV crosslinking, poly(A)-
RNA capture, and mass spectrometry, identified more
than a thousand proteins interacting with RNA, discov-
ering hundreds of novel RBPs [25, 26]. Strikingly, both
known and novel RBPs were significantly enriched in
disordered regions compared with the total human
proteome. Approximately 20 % of the identified mam-
malian RBPs (~170 proteins) were disordered by over
80 % [25, 27]. Apart from the disorder-promoting amino
acids such as serine (S), glycine (G), and proline (P),
these disordered regions were enriched in positively
(K,R) and negatively (D, E) charged residues as well as
tyrosine (Y) [25], amino acids often found at RNA-
interacting surfaces in classical RBDs [8]. Disordered
amino acid sequences in RBPs form recognisable pat-
terns that include previously reported motifs such as
RG-and RS-repeats as well as new kinds of motifs, such
as K or R-rich basic patches (Fig. 1). As with classical
RBDs, disordered regions also occur in a modular man-
ner in RBPs, repeating multiple times in a non-random
manner across a given protein and, in some instances,
combining with globular domains [25]. Taken together,
these observations suggest that disordered regions 1)
contribute to RBP function; 2) combine in a modular
manner with classical RBDs suggesting functional
cooperation; and 3) may play diverse biological roles, in-
cluding RNA binding. Supporting this, a recent report
has shown that globular RBDs are on average well con-
served in number and sequence across evolution, while
disordered regions of RBPs have expanded correlating
with the increased complexity of transcriptomes [13].
What is the contribution and functional significance of
protein disorder in RNA-protein interactions? Below, we
will discuss what is known about disordered regions in
RNA binding and metabolism, as well as physiology and
disease, based on accumulating literature (Table 1,
Additional file 1: Figure S1).

Review
Disordered RS repeats put RNA splicing in order
Disordered, arginine and serine (RS) repeat containing
regions occur in a number of human proteins referred
to as SR proteins and SR-like proteins (reviewed in
[28, 29]). SR proteins are best known for their roles
in enhancing splicing but have been ascribed functions in
other RNA processes from export, translation, and stabil-
ity to maintenance of genome stability (e.g. [30, 31] for
reviews). There are twelve SR proteins in human that
contain 1–2 classical RRMs and an RS repetitive motif
of varying length [30]. Classical SR proteins bind exonic
splicing enhancers in nascent RNA through their RRMs
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and promote splicing of adjacent introns [32, 33]. The
RS repeat enhances splicing in a length-dependent
manner [34]. RS repeats are predicted to be intrinsically
disordered [35] (Table 1), but phosphorylation pro-
motes a transition towards a less flexible, arch-like
structure with an influence on RNA binding in the
serine/arginine-rich splicing factor 1 (SRSF1) [36]
(Fig. 1). RS repeats have been shown to directly bind
RNA during multiple steps of splicing [19, 37–39] and
to contribute to binding affinity of RRMs for RNA by
inducing a higher affinity form of the RRM [40]. RS
repeats can also mediate protein-protein interactions
[28, 33], hence their association with RNA can also be
indirect. RS-mediated protein binding seems to be
compatible with RNA binding [33, 41], suggesting that
protein and RNA binding could take place simultan-
eously or sequentially. RNA-binding by RS repeats
seems to be rather non-specific, as motif shortening,
replacement of arginine for lysine, amino acid insertion,
and replacement for a homologous sequences are well
tolerated [19, 37, 38]. In summary, there is compelling
evidence that disordered RS protein motifs play an im-
portant role in RNA splicing, and that the interaction
between these repeats and RNA occurs mostly in a
sequence-independent manner. Nevertheless, it remains

to be determined how many of the SR proteins interact
with RNA through the RS repeats, and whether the differ-
ences in RS repeat length have a direct effect on RNA
binding affinity or specificity.
Certain members of the SR-related protein family lack

RRMs and are involved in diverse RNA metabolic pro-
cesses [42]. For example, NF-kappa-B-activating protein
(NKAP) (Fig. 1) is an SR-related protein, with a newly
discovered role in RNA splicing [43], but originally
known for its roles in NF-kappa-B activation [44] and as
a transcriptional repressor of Notch-signalling in T-cell
development [45]. This protein binds RNA through its
RS repeat, in cooperation with an RBD at its C-terminal
region. A transcriptome-wide study showed this protein
targets diverse classes of RNAs, including pre-mRNAs,
ribosomal RNAs and small nuclear RNAs [43]. RNA-
binding RS repeat sequences can also be found in viral
proteins, such as the nucleocapsid of severe acute re-
spiratory syndrome coronavirus (SARS-CoV), causative
agent of the alike-named disease. This protein employs
RS-rich disordered region, in cooperation with other
RNA-binding regions, to capture viral RNA and package
it into virions [46]. Taken together, these reports suggest
that RS repeats have broader roles in RNA-binding than
previously anticipated.

Fig. 1 Three classes of disordered protein regions involved in direct RNA-interactions. Blue oval indicates the disordered region of each protein
involved in RNA binding. Sequence is shown below the protein model, and typical sequence characteristics are indicated by boxes. Disorder pro-
file was calculated using IUPred [172]. Values above 0.4 are considered disordered
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Table 1 Examples of RNA binding proteins where a disordered, non-classical region is involved in direct RNA binding. Additional details for each protein are presented
in Additional file 1: Figure S1. Disorder prediction was calculated using IUPred [172]

Protein Properties of disorder involved in RNA binding

ID Name Aliases Species Canonical
domains

Function Class Sequence Disorder
assignment

Target RNA
preference

Regulation at
disordered region

Interaction
with other
biomolecules

Ref

SRSF1 Serine/arginine-
rich splicing
factor 1

ASF, SF2,
SF2P33,
SFRS1

Homo
sapiens

2xRRM RNA splicing.
Essential for
heart
development.

RS 196−GPRSPSYGRSRSRSR
SRSRSRSRSNSRSRS
YS−227

Experimental - Serine phosphorylated.
Becomes more
structured upon
phosphorylation.
Alternatively spliced.

Protein [36,
39,
173–
175]

U2AF2 Splicing factor
U2AF 65 kDa
subunit

U2AF65 Homo
sapiens

3xRRM RNA splicing. RS 1−MSDFDEFERQLNENK
QERDKENRHRKRSHS
RSRSRDRKRRSRSRD
RRNRDQRSASRDRRR
RSKPLTRGAKEEHGG
LIRSPRHEKKKKVRK
YWDVPPPG−98

Predicted No
specificity

Serine phosphorylation,
lysine acetylation,
lysine hydroxylation a

Protein [19,
176]

NKAP NF-kappa-B-
activating
protein

- Homo
sapiens

None RNA splicing,
transcriptional
repression.

RS 1−MAPVSGSRSPDREAS
GSGGRRRSSSKSPKP
SKSARSPRGRRSRSH
SCSRSGDRNGLTHQL
GGLSQGSRNQSYRSR
SRSRSRERPSAPRGI
PFASASSSVYYGSYS
RPYGSDKPWP−115

Predicted poly (U) Lysine acetylation a Protein [43]

Nucleo-
capsid
protein

- Nucleoprotein,
NC, N

Severe acute
respiratory
syndrome
coronavirus
(SARS-CoV)

None Major
structural
component of
virions that
associates with
genomic RNA
to form a long,
flexible, helical
nucleo-capsid.

Other,
RS,
polyK/
other

1−MSDNGPQSNQRSAPR
ITFGGPTDSTDNNQN
GGRNGARPKQRRPQ−44,
182−QASSRSSSRSRGNSR
NSTPGSSRGNSPARM
ASGGGETALALLLLDR
LNQLESKVSGKGQQQ
QGQTV−247,
366−PTEPKKDKKKKTDEA
QPLPQRQKKQPTVTL
LPAADMDDFSRQLQN
SMSGASADSTQ−422

Experimental poly (U)
ssRNA

- - [46,
177]

ALYREF Aly/REF export
factor 2

Alyref Mus
musculus

1xRRM RNA export. RG 22−VNRGGGPRRNRPAIA
RGGRNRPAPYSR−48

Experimental - TAP displaces RNA
from ALYREF

Protein [54,
55,
57,
178]

Aven Cell death
regulator Aven

- Homo
sapiens

None Positive
translational
regulator.

RG 1−MQAERGARGGRGRRP
GRGRPGGDRHSERPG
AAAAVARGGGGGGGG
DGGGRRGRGRGRGFR
GARGGRGGGGAPR−73

Predicted RNA
G-quadruplex

Methylated (no
influence on RNA
binding; influences
protein interactions
and polysome
association).
Alternative transcript
(mouse)

Protein [179,
180]

Caprin-1 - None RG Predicted - -
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Table 1 Examples of RNA binding proteins where a disordered, non-classical region is involved in direct RNA binding. Additional details for each protein are presented
in Additional file 1: Figure S1. Disorder prediction was calculated using IUPred [172] (Continued)

GPIAP1,
GPIP137,
M11S1,
RNG105

Homo
sapiens,
Xenopus

Regulation of
localised
translation,
synaptic
plasticity, cell
proliferation
and migration.

612−RGGSRGARGLMNGYR
GPANGFRGGYDGYRP
SFSNTPNSGYTQSQF
SAPRDYSGYQRDGYQ
QNFKRGSGQSGPRGA
PRGRGGPPRPNRGMP
QMNTQQV−708

(human),
578−RGMARGGQRGNRGMM
NGYRGQSNGFRGG−605

(Xenopus)

The end of the human
sequence (RGGPPRP
NRGMPQMNTQQV)
is in an alternative
isoform a

[181,
182]

DDX4 Probable ATP-
dependent RNA
helicase DDX4

Vasa Homo
sapiens

None RNA helicase. RG 1−MGDEDWEAEINPHMS
SYVPIFEKDRYSGEN
GDNFNRTPASSSEMD
DGPSRRDHFMKSGFA
SGRNFGNRDAGECNK
RDNTSTMGGFGVGKS
FGNRGFSNSRFEDGD
SSGFWRESSNDCEDN
PTRNRGFSKRGGYRD
GNNSEASGPYRRGGR
GSFRGCRGGFGLGSP
NNDLDPDECMQRTGG
LFGSRRPVLSGTGNG
DTSQSRSGSGSERGG
YKGLNEEVITGSGKN
SWKSEAEGGES−236

Experimental Single-
stranded
DNA.

Arginine methylation.
Alternative isoforms a

- [130]

EWS RNA-binding
protein EWS

EWSR1 Homo
sapiens

1xRRM Transcription,
splicing.

RG 288−PGENRSMSGPDNRGR
GRGGFDRGGMSRGGR
GGGRGGMGSAGERGG
FNKPGGPMDEGPDLD
LGPPVDP−354,
450−PMNSMRGGLPPREGR
GMPPPLRGGPGGPGG
PGGPMGRMGGRGGDR
GGFPPRG−501,
545−APKPEGFLPPPFPPP
GGDRGRGGPGGMRGG
RGGLMDRGGPGGMFR
GGRGGDRGGFRGGRG
MDRGGFGGGRRGGPG
GPPGPLMEQMGGRRG
GRGGPGKMDK
GEHRQERRDRPY−656

Predicted G-quadruplex
(RGG3, not
RGG1 or RGG2)

Alternative splicing a.
Arginine dimethylation
at RGG repeats affects
protein sub cellular
localization

DNA (via
RGG3). All
three RGG
repeats bind
SMN protein.

[183–
187]

FMRP Fragile X mental
retardation
protein 1

FMR1 Homo
sapiens,
mouse

2xKH Regulation of
translation
(repressor).

RG 527−RRGDGRRRGGGGRGQ
GGRGRGGGFKG−552

Experimental G quartets,
G-quadruplex

Arg methylation.
Alternative splicing
at regions flanking
the RGG-box alters
FMRP’s capacity to
bind RNA, to be
methylated, and

C-terminal
part of this
protein that
also includes
the RG region
is involved
in protein-

[68–
70,
72,
75–
78,
152,
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Table 1 Examples of RNA binding proteins where a disordered, non-classical region is involved in direct RNA binding. Additional details for each protein are presented
in Additional file 1: Figure S1. Disorder prediction was calculated using IUPred [172] (Continued)

associate with
polysomes.

protein
interactions.

188,
189]

FUS RNA-binding
protein FUS

TLS Homo
sapiens,
Drosophila
melanogaster

1xRRM Splicing,
poly-
adenylation.

RG 213−RGGRGRGG−220, 241−

PRGRGGGRGGRGG−253, 377−

RGGGNGRGGRGRGGP
MGRGGYGGGGSGGGG
RGG−409, 472−

RRGGRGGYDRGGYRG
RGGDRGGFRGGRGGG
DRGG−505

Predicted G-quadruplex Arginine methylation. - [190–
193]

hnRNP U Heterogeneous
nuclear
ribonucleoprotein
U

HNRPU,
SAFA,
U21.1

Homo
sapiens

None RNA stability,
U2 snRNP
maturation,
DNA binding.

RG 714−MRGGNFRGGAPGNRG
GYNRRGNMPQR−739

Predicted Poly (U and
poly (G)
homopolymers,
UGUGG

- DNA [20,
51]

ICP27 Infected cell
protein 27,
Immediate-early
protein IE63

- Herpes
simplex
virus

None RNA export. RG 138−RGGRRGRRRGRGRGG
−152

Predicted poly (G) and
poly (U)
homopolymers,
GC-rich
sequences

Methylated - [194–
196]

LAF1 - DDX3 C. elegans None RNA
helicase.

RG 1−MESNQSNNGGSGNAA
LNRGGRYVPPHLRGG
DGGAAAAASAGGDDR
RGGAGGGGYRRGGGN
SGGGGGGGYDRGYND
NRDDRDNRGGSGGYG
RDRNYEDRGYNGGGG
GGGNRGYNNNRGGGG
GGYNRQDRGDGGSSN
FSRGGYNNRDEGSDN
RGSGRSYNNDRRDNG
GDG−168

Experimental - Region 43–106
containing
RG-repeat is
alternative.

- [142]

NXF1 Nuclear RNA
export factor 1

TAP Mus
musculus,
homo
sapiens

None Nuclear
export.

RG 2−ADEGKSYSEHDDERV
NFPQRKKKGRGPFRW
KYGEGNRRSGRGGSG
IRSSRLEEDDGDVAM
SDAQDGPRVRYNPYT
TRPNRRGDTWHDRDR
IHVTVRRDRAPPERG
GAGTSQDGTSKN−118

Predicted Non-specific - Protein.
Overlaps a
nuclear
localisation
and export
signals.

[55,
197,
198]

Nucle-
olin

- NCL,
Protein
C23

Hamster 4xRRM Chromatin
decondensat
ion, pre-rRNA
transcription,
ribosome
assembly.

RG 630−MEDGEIDGNKVTLDW
AKPKGEGGFGGRGGG
RGGFGGRGGGRGGGR
GGFGGRGRGGFGGRG
GFRGGRGGGGGGGDF
KPQGKKTKFE−714

Experimental.
Suggested to
form a
flexible
β-spiral.

None - Protein
(in human)

[199,
200]

RBMX RNA-binding
motif protein, X
chromosome

HNRPG,
RBMXP1

Homo
sapiens,
Xenopus
laevis

1xRRM Regulation of
transcription,
splicing.

RG 333−DLYSSGRDRVGRQER
GLPPSMERGYPPPRD
SYSSSSRGAPRGGGR
GGSRSDRGGGRSR−390

Predicted C-terminal
regions binds
structured
(hairpin) RNA

Identical C-terminal
sequence is mouse
RBMX is alternatively
spliced.

- [201–
206]
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Table 1 Examples of RNA binding proteins where a disordered, non-classical region is involved in direct RNA binding. Additional details for each protein are presented
in Additional file 1: Figure S1. Disorder prediction was calculated using IUPred [172] (Continued)

Foamy
virus Gag

- - Human
foamy virus

None Viral genome
binding,
capsid
formation.

RG 485−RPSRGRGRGQN−495 Predicted - - - [207–
210]

TERF2 Telomeric repeat-
binding factor 2

TRBF2,
TRF2

Homo
sapiens

None Presynaptic
plasticity,
axonal mRNA
transport,
telomere
maintenance

RG 43−MAGGGGSSDGSGRAAG
RRASRSSGRARRGRHEPGL
GGPAERGAG- 86

Predicted G-rich, TERRA Arginine methylation Protein [211–
214]

XTUT7 - - Xenopus
laevis

Zinc
finger

RNA
polyuridylat-
ion, translational
repression.

Basic
patch
(poly
R)

453−MRRNRVRRRNNENAG
NQRY−471

Predicted - - - [215]

Tat Transactivating
regulatory protein

- Human
immuno-
deficiency
virus (HIV)

None transcriptional
activator,
transcription
elongation.

Basic
patch
(poly
R)

49−RKKRRQRRR−57 Experimental Structured
RNA (HIV-1
Trans-
activation
response
element,
TAR)

Arginine methylation
(with impact on
RNA binding).
Lysine acetylation
(impact on TAR
binding, through
an effect on
Tat-TAR-CyclinT1
ternary complex
formation).

Protein [85,
88–
91,
93,
216–
223]

Rev Regulator of
expression of viral
proteins

- Human
immuno-
deficiency
virus (HIV)

None RNA export. Basic
patch
(poly
R)

34−TRQARRNRRRRWRER
QR−50

Experimental Structured
RNA (HIV-1
Rev response
element,
RRE)

Arginine methylation. Protein [96–
101,
103,
104,
153,
154,
224]

Tat Transactivating
regulatory protein

S ORF,
bTat

Bovine
immuno
deficiency
virus

None Transcriptional
activator

Basic
patch
(polyR)

70−RGTRGKGRRIRR−81 Experimental Structured
RNA (TAR)

- Protein [91]

Coat
protein

- - Alfalfa
mosaic
virus

None Capsid protein,
viral RNA.
Translation
initiation.

Basic
patch
(poly
K)

6−KKAGGKAGKPTKRSQ

NYAALRK−27

Experimental - - - [225,
226]

PAPD5 Non-canonical
poly (A) RNA
polymerase
PAPD5

- Homo
sapiens

None RNA
oligoadenylat
ion, RNA
stability

Basic
patch
(poly
K)

557−KKRKHKR−563 Predicted May have a
preference for
structured
RNA

Alternative splicing a - [109]

SDAD1 Protein SDA1
homolog

- Homo
sapiens

None Protein transport,
ribosomal large
subunit export
from nucleus.

Basic
patch
(poly
K)

244−RDLLVQYATGKKSSK
NKKKLEKAMKVLKKQ
KKKKKPEVFNFS−285

Predicted - - - [58]

HMGA1 - None - (e) AT 21−TEKRGRGRPRK−31 Experimental DNA
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Table 1 Examples of RNA binding proteins where a disordered, non-classical region is involved in direct RNA binding. Additional details for each protein are presented
in Additional file 1: Figure S1. Disorder prediction was calculated using IUPred [172] (Continued)

High mobility
group protein
HMG-I/HMG-Y

Homo
sapiens

Binds
structured
RNA.

Arginine
methylation.

[121,
124,
125,
127]

Tip5 Bromodomain
adjacent to zinc
finger domain
protein 2A

BAZ2A Homo
sapiens

None Epigenetic
rRNA gene
silencing.

(e) AT 650−GKRGRPRNTEK−660,
670−KRGRGRPPKVKIT−682

Experimental Exhibits
preferential
binding
towards
dsRNA

- DNA [127,
227,
228]

PTOV1 Prostate tumor-
overexpressed
gene 1 protein

ACID2,
PP642

Homo
sapiens

None Regulation of
transcription.

(e) AT 1−MVRPRRAPYRSGAGG
PLGGRGRPPRPLVVR
AVRSRSWPASPRG−43

Predicted Exhibits
preferential
binding
towards
dsRNA

Alternative
splicing a

DNA [127]

GPBP1 - Vasculin,
GPBP,
SSH6

Homo
sapiens

None Transcription
factor, positive
regulation of
transcription

e (AT) 38−NRYDVNRRRHNSSDG
FDSAIGRPNGGNFGR
KEKNGWRTHGRNG−80

Predicted Exhibits
preferential
binding
towards
dsRNA

Alternative
splicing a

DNA [127]

SRSF2 Serine/arginine-
rich splicing
factor 2

SFRS2 Homo
sapiens

1xRRM RNA splicing. Other
(GRP)

1−MSYGRPPP−8,
93−GRPPDSHHS−101

Experimental UCCA/UG,
UGGA/UG

- [229,
230]

Tra2-β1 Transformer-2
protein homolog
beta

TRA2B, SFRS10 Homo
sapiens

1xRRM RNA splicing. Other 110−NRANPDPNCC−119,
194−SITKRPHT−201

Experimental GAAGAA
(primary),
AGAAG
(primary),
GACUUCAACA
AGUC
(structured)

- - [40,
231–
233]

hnRNPA1 Heterogeneous
nuclear
ribonucleoprotein
A1

HNRPA1 Human,
Xenopus
tropical

2xRRM hnRNP particle
formation,
nucleo-
cytoplasmic
transport,
splicing.

Other/
RG

186−MASASSSQRGRSGSG
NFGGGRGGGFGGNDN
FGRGGNFSGRGGFGG
SRGGGGYGGSGDGYN
GFGNDGGYGGGGPGY
SGGSRGYGSGGQGYG
NQGSGYGGSGSYDSY
NNGGGGGFGGGSGSN
FGGGGSYNDFGNYNN
QSSNFGPMKGGNFGG
RSSGPYGGGGQYFAK
PRNQGGYGGSSSSSS
YGSGRRF−372

Predicted - Region containing
the RG- and
FG-repeat peptides
is alternatively
spliced.
RG-region may
mediate RNA
binding. The entire
region is involved
in hnRNPA1
aggregation
and includes a
nuclear targeting
sequence.

- [136,
234–
237]

LUZP4 Leucine zipper
protein 4

CT-28, Homo
sapiens

None Nuclear export. 51−RQNHSKKESPSRQQSKAH
RHRHRRGYSRCR−80, 238−LVD
TQSDLIATQRDLIATQK
DLIATQRDLIATQRDLIVTQR
DLVATERDL−287

Predicted - Alternative splicing
affecting the first,
R-rich region a

Protein [197]

ORF57 - None Other Experimental Protein [178]
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Table 1 Examples of RNA binding proteins where a disordered, non-classical region is involved in direct RNA binding. Additional details for each protein are presented
in Additional file 1: Figure S1. Disorder prediction was calculated using IUPred [172] (Continued)

52 kDa
immediate-early
phosphoprotein,
mRNA export
factor ICP27
homolog

Herpes-
virus
saimiri

Viral RNA
regulation.

64−RQRSPITWEHQSPLS
RVYRSPSPMRFGKRP
RISSNSTSRSCKTSW
ADRVREAAAQRR−120

Viral RNA:
GAAGAGG,
CAGUCGCG
AAGAGG

RNA binding region
partially overlaps
with ALYREF
binding site.

APC Adenomatous
polyposis coli
protein

- Mus
musculus

None Microtubule
binding,
negative
regulator of
Wnt signaling.

Other 2223−SISRGRTMIHIPGLR
NSSSSTSPVSKKGPP
LKTPASKSPSEGPGA
TTSPRGTKPAGKSEL
SPITRQTSQISGSNK
GSSRSGSRDSTPSRP
TQQPLSRPMQSPGRN
SISPGRNGISPPNKL
SQLPRTSSPSTASTK
SSGSGKMSYTSPGRQ
LSQQNLTKQASLSKN
ASSIPRSESASKGLN
QMSNGNGSNKKVELS
RMSSTKSSGSESDSS
ERPALVRQSTFIKEA
PSPTLRRKLEESASF
ESLSPSSRPDSPTRS
QAQTPVLSPSLPDMS
LSTHPSVQAGGWRKL
PPNLSPTIEYNDGRP
TKRHDIARSHSESPS
RLPINRAGTWKREHS
KHSSSLPRVSTWRRT
GSSSSILSASSE−2579

Predicted G-rich motif - - [238]

CTCF Transcriptional
repressor CTCF

- Homo
sapiens

11x Zn
finger (3
according
to Pfam)

- Other 575−DNCAGPDGVEGENGG
ETKKSKRGRKRKMRS
KKEDSSDSENAEPDL
DDNEDEEEPAVEIEP
EPEPQPVTPAPPPAK
KRRGRPPGRTNQPKQ
NQPTAIIQVEDQNTG
AIENIIVEVKKEPDA
EPAEGEEEEAQPAAT
DAPNGDLTPEMILSM
MDR−727

Predicted - Serine
phosphorylation a

- [239]

Df31 Decondensation
factor 31

Anon1A4 D.
melanogaster

None Regulation of
higher-order
chromatin
structure,
maintenance
of open
chromatin.

Other 1−MADVAEQKNETPVVE
KVAAEEVDAVKKDAV
AAEEVAAEKASITEN
GGAEEESVAKENGAA
DSSATEPTDAVDGEK
ASEPTVSFAADKDEK
KDEDKKEDSAADGED
TKKESSEAVLPAVEN
GSEEVTNGDSTDAPA
IEAVKRKVDEAAAKA
DEAVATPEKKAKLDE

Experimental Non-specific
but does not
bind ssDNA
or dsDNA.
Preferentially
binds
snoRNA.

- - [127,
240]
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Table 1 Examples of RNA binding proteins where a disordered, non-classical region is involved in direct RNA binding. Additional details for each protein are presented
in Additional file 1: Figure S1. Disorder prediction was calculated using IUPred [172] (Continued)

ASTKDEVQNGAEASE
VAA−183

Ezh2 Histone-lysine
N-methyltransferase
EZH2

Enx1h Mus
musculus

None Polycomb
group protein.
Involved in H3
methylation
(H3K9me and
H3K27me).

Other 342−RIKTPPKRPGGRRRG
RLPNNSSRPSTPTI−370

Predicted May have a
preference
for RNA
stem loops.

1st Thr is
phosphorylated
in a cell cycle
dependent manner.
Phosphorylation
increases RNA
binding.

This region
overlaps a
region
involved in
protein-protein
interactions
in human,
however, RNA
and protein
binding
regions may
be distinct
from one
another.

[241–
243]

Nrep Neuronal
regeneration-
related protein

P311 Mus
musculus

None Axonal
regeneration,
cell
differentiation.

Other 27−KGRLPVPKEVNRKKM
EETGAASLTPPGSRE
FTSP−60

Experimental - - Protein [244]

Gemin5 Gem-associated
protein 5

- Homo
sapiens

None snRNP
assembly,
splicing,
IRES-mediated
translation
initiation.

Other 1297−PNSSVWVRAGHRTLS
VEPSQQLDTASTEET
DPETSQPEPNRPSEL
DLRLTEEGERMLSTF
KELFSEKHASLQNSQ
RTVAEVQETLAEMIR
QHQKSQLCKSTANGP
DKNEPEVEAEQ−1412, 1383−

EMIRQHQKSQLCKSTANG
PDKNEPEVEAEQ
PLCSSQSQCKEEKNEP
LSLPELTKRLTEANQRMAK
FPESIKAWPFPDVLECCL
VLLLIRSHFPGCLAQEMQ
QQAQELLQKYGNTK
TYRRHCQTFCM−1508

Experimental - - - [245]

Nup153 - - Homo
sapiens

None Component
of the
nucleopore,
RNA trafficking.

Other 250−KTSQLGDSPFYPGKT
TYGGAAAAVRQSKLR
NTPYQAPVRRQMKAK
QLSAQSYGVTSSTAR
RILQSLEKMSSPLAD
AKRIPSIVSSPLNSP
LDRSGIDITDFQAKR
EKVDSQYPPVQRLMT
PKPVSIATNRSVYFK
PSLTPSGEFRKTNQR
I−400

Predicted Single-
stranded
RNA with
little
sequence
preference

Serine and
threonine
phosphorylation a

- [246,
247]

SCML2 Sex comb on
midleg-like
protein 2

- Homo
sapiens

None Binds
Polycomb
Repressive

Other 256−SPSEASQHSMQSPQK
TTLILPTQQVRRSSR
IKPPGPTAVPKRSSS

Predicted No specificity,
but
discriminates

Alternative
isoform a ,

- [248]
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Table 1 Examples of RNA binding proteins where a disordered, non-classical region is involved in direct RNA binding. Additional details for each protein are presented
in Additional file 1: Figure S1. Disorder prediction was calculated using IUPred [172] (Continued)

Complex 1
and histones.
Involved in
epigenetic
silencing.

VKNITPRKKGPNSGK
KEKPLPVICSTSAAS−330

between
RNA and
DNA.

Serine
phosphorylation a

KDM4D Lysine-specific
demethylase 4D

JMJD2D Homo
sapiens

None Demethylates
lysine 9 on
histone H3.

Other 348−MEPRVPASQELSTQK
EVQLPRRAALGLRQL
PSHWARHSPWPMAAR
SGTRCHTLVCSSLPR
RSAVSGTATQPRAAA
VHSSKKPSSTPSSTP
GPSAQIIHPSNGRRG
RGRPPQKLRAQELTL
QTPAKRPLLAGTTCT
ASGPEPEPLPEDGAL
MDKPVPLSPGLQHPV
KASGCSWAPVP−523

Experimental - - - [249]

- - - Synthetic None Bind HIV
RNA (RRE)

Other/
polyR

SRSSRRNRRRRRRR,
NHRRRRRQRRRRRR,
SPCRSRRSGSSRRRRRRR

Experimental Structured
RNA
(HIV-1 Rev
response
element,
RRE)

- - [105]

a According to uniprot, from a large-scale study but no detailed experimental confirmation available
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RG-rich repeats — The swiss-army knife of
protein-RNA interactions
A commonly occurring disordered RNA–binding motif
in RBPs consists of repeats of arginine and glycine,
termed RGG-boxes or GAR repeats. These sequences
are heterogeneous both in number of repeats and in
their spacing. A recent analysis divided these RG-rich
regions into di- and tri-RG and -RGG boxes, and identi-
fied instances of such repeats in order of tens (di- and
tri-RGG) to hundreds (tri-RG) and nearly two thousand
(di-RG) proteins [47]. Proteins containing such repeats
are enriched in RNA metabolic functions [47]. However,
it is not currently clear whether the different repeat
architectures provide distinct functional signatures.
The RGG box was first identified in the heterogeneous

nuclear ribonucleoprotein protein U (hnRNP-U, also
known as SAF-A) as a region sufficient and required for
RNA binding (Table 1, Fig. 1). hnRNP-U lacks canonical
RBDs, but has semi-structured SAP domain involved in
DNA binding [48–50]. hnRNP-U has been found to
target hundreds of non-coding RNAs, including small
nuclear (sn)RNAs involved in RNA splicing, and a num-
ber of long non-coding (lnc)RNAs, in an RGG-box-
dependent manner [51]. RGG-mediated interaction of
hnRNP-U with the lncRNAs Xist [52] and PANDA [53]
has been implicated in epigenetic regulation.
RG[G] -mediated RNA binding also plays a role in

nuclear RNA export, as illustrated by the nuclear RNA
export factor 1 (NXF1). While NXF1 harbours an RRM
capable of binding RNA [54], most of the in vivo RNA-
binding capacity is attributed to the RGG-containing, N-
terminal region [55] (Table 1). The arginines in this
motif play a key role in the interaction with RNA, which
has been shown to be sequence-independent but neces-
sary for RNA export [55]. NXF1 overall affinity for RNA
is low [55, 56], and requires the cooperation with the
export adapter ALY/REF [57]. ALY/REF also bears an
N-terminal disordered arginine-rich region that re-
sembles an RGG-box [57] and mediates both RNA
binding [54, 58, 59] and the interaction with NXF1
[60]. The activation of NXF1 is proposed to be triggered
by the formation of a ternary complex between ALY/REF
and NXF1, in which their RG-rich disordered regions play
a central role. Analogous sequences has been identified in
viral proteins and also facilitate viral RNA export by
bypassing canonical nuclear export pathways (Table 1).
Fragile X mental retardation protein (FMRP) is another

RBP with a well-characterised, RNA-binding RGG-box
(Fig. 1). Involved in translation repression in the brain
[61], loss of FMRP activity leads to changes in synaptic
connectivity [62], mental retardation [63–65], and may
also promote onset of neurodegenerative diseases [66]. In
addition to its RGG-box, FMRP contains two KH domains
that contribute to RNA binding. The RGG-box of FMRP

has been shown to interact with high affinity with G-
quadruplex RNA structures [67–77]. The RGG-box is un-
structured in its unbound state [70, 78], but folds upon
binding to a guanine-rich, structured G-quadruplex in tar-
get RNA [78] (Fig. 2). Both arginines and glycines play a
key role in the function of the RGG-box and replacement
of these amino acids impair RNA binding [78]. The argin-
ine residues used to interact with RNA vary depending on
the target RNA [70, 76, 78]. The FMRP RGG-box targets
its own mRNA at an G-quadruplex structure that encodes
the RGG-box [69]. This binding regulates alternative spli-
cing of FMRP mRNA proximal to the G-quartet, suggest-
ing it may auto-regulate the balance of FRMP isoforms
[74]. Surprisingly, a recent transcriptome-wide study of
polysome-associated FMRP found no enrichment for
predicted G-quadruplex structures in the 842 high-
confidence target mRNAs [79]. Another study identified
FMRP binding sites enriched in specific sequence motifs,
where the KH2 domains emerged as the major specificity
determinants [80]. These results suggest that the role of
RGG-box in this RBP could be limited to increase the
overall binding affinity of the protein, supporting the
sequence-specific interactions mediated by the KH2
domains. However, we cannot exclude the possibility of
differential UV crosslinking efficiency of the KH2 domains
and the RGG-box, which could result in biased binding
signatures in CLIP studies.
A number of other RBPs use an RGG-repeat region to

target G-rich and structured RNA targets and are impli-
cated in neurological disease as well as cancer (Table 1).
These RG-rich regions can mediate both unselective and
specific interactions with RNA and can be involved in
varied RNA metabolic processes.

Catching the RNA with a basic arm
Basic residues often cluster in RBPs to form basic
patches that can contribute to RNA-binding. Analysis of
mammalian RNA-binding proteomes showed that such
motifs are abundant among unorthodox RBPs [25, 27].
Basic patches are normally composed of 4–8 lysines (K)
or, less frequently, arginines (R), forming a highly posi-
tive and exposed interface with potential to mediate mo-
lecular interactions [25]. Basic patches can occur at
multiple positions within an RBP forming islands that
often flank globular domains. This suggests functional
cooperation between natively structured and unstruc-
tured regions [25]. Many RBPs contain alternating basic
and acidic tracts that form highly repetitive patterns
with unknown function [25]. Since acidic regions are not
thought to interact with RNA [58], they may be involved
in other intra- or intermolecular interactions, or contrib-
ute to accessibility and compaction of the region [81].
Arginine rich motifs (ARMs) (Table 1) are probably

best characterised in viral proteins. These motifs tend to
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be disordered, and when bound to RNA, range from
completely disordered to ordered but flexible. Although
simple in terms of amino acid composition, ARMs seem
to be able to target RNAs quite diversely and often spe-
cifically [82]. Lentiviral Tat proteins (Trans-Activator of
Transcription) are key regulator of viral biological cycle
by promoting viral gene expression upon binding to an
RNA structure present at the 5’ end of the nascent viral
RNA (called the trans-activation response element, TAR)
[83]. Human immunodeficiency virus (HIV) Tat ARM is
intrinsically disordered in its free-state [84–87]. Only
one key arginine, flanked by basic amino acids, is required
for specific interaction with TAR [88, 89]. Differences in
the flanking basic amino acids contribute to selectivity
between TARs from different viruses [90]. ARMs can ac-
commodate different binding conformations depending
on their target RNA. For example, bovine immunodefi-
ciency virus (BIV) Tat ARM forms a beta-turn conform-
ation upon binding to TAR [91] (Fig. 2c). Jembrana
disease virus (JDV) Tat ARM can bind both HIV and BIV
TARs, as well as its own TAR, but does so adopting differ-
ent conformations and using different amino acids for rec-
ognition [92]. The RNA-binding disordered region of HIV
Tat also mediates protein-protein interactions required for
nuclear localisation [93]. Structural flexibility required to
engage in diverse simultaneous or sequential RNA and
protein interactions might explain why the native ARM-
RNA interactions do not display very high affinity [92].
Similar to Tat proteins, lentiviral Rev auxiliary protein

binds a structured RNA element (the Rev response
element, RRE) present in partially-spliced and unspliced
viral RNAs to facilitate nuclear export of viral RNA
[94, 95]. The HIV Rev ARM was experimentally
shown to be intrinsically disordered when unbound in
physiological conditions [96–98] (Table 1, Fig. 1).

Disorder-to-structure transition correlates with RNA
binding and the RRE-bound Rev folds into an alpha-
helical structure that maintains some structural flexibility
[96–100]. Rev oligomerises and binds the multiple stems
of the RRE using diverse arginine contacts, which results
in a high-affinity ribonucleoprotein that allows efficient
nuclear export of unspliced HIV RNAs [101–103]. Inter-
estingly, Rev can also bind in an extended conformation
to in vitro selected RNA aptamers [104], highlighting the
role of RNA secondary and tertiary structure in the con-
formation that Rev adopts. The RRE can also be recog-
nised by several different in vitro selected R-rich peptides
that include additional serine, glycine, and glutamic acid
residues [105–107] — these peptides are predicted to be
disordered (Table 1). A simple, single nucleotide base
changes in the RRE can direct affinity towards a particular
ARM [108]. These features highlight the structural malle-
ability of the Rev ARM, and suggest that some structural
flexibility is relevant for in vivo binding.
The basic amino acid lysine can form disordered poly-

lysine peptides that interact with RNA. 47 proteins identi-
fied in the human RNA-binding proteome have a long
poly-K patch but lack known RBDs, suggesting these mo-
tifs are good candidates for RNA binding [25]. The K-rich
C-terminal tail of protein SDA1 homolog (SDAD1) is com-
posed of 45 amino acids, including 15 K, one R, two gluta-
mines (Q) and two asparagines (N) (Table 1, Fig. 1). It
binds RNA in vivo with similar efficiency as a canonical
domain such as RRM [58]. The human non-canonical
poly(A) polymerase PAPD5, that is involved in oligoadeny-
lating aberrant rRNAs to target them for degradation [109,
110], also lacks canonical RBDs, but its C-terminal basic
patch is directly involved in binding RNA (Fig. 1, Table 1).
Removal or mutation of this sequence results in impaired
RNA binding and reduced catalytic activity [109].

a b cFMRP
(human)

RevTat

Fig. 2 Structural examples RNA-bound disordered regions. a The RGG-peptide of the human FMRP bound to a in vitro-selected guanine-rich sc1
RNA determined by NMR (PDB 2LA5) [78] b Basic patch of disordered bovine immunodeficiency virus (BIV) Tat forms a β–turn when interacting
with its target RNA, TAR. Structure determined by NMR (PDB 1MNB) [91] c Dimer of the basic patch containing Rev protein of the human
immunodeficiency virus (HIV) in complex with target RNA, RRE, determined by crystallography [102] (PDB 4PMI). Red, peptide; yellow, RNA. Illustrations
were created using PyMol
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Basic tails in RBPs share physicochemical similar-
ities with analogous sequences in DNA-binding pro-
teins (DBPs) [111]. In DNA-binding context, basic
patches are known to endow faster association with
DNA due to increased ‘capture radius’ as well as to
promote hopping and sliding movements along DNA
molecules [112–118]. DNA binding through basic tails
seems to be sequence-independent [119] and struc-
tural studies have shown that basic residues are pro-
jected into the minor grove of the double stranded
DNA helix, establishing numerous electrostatic inter-
actions with the phosphate-sugar backbone [116, 120].
Basic patches in RBPs may modulate RNA searching
and binding avidity in a similar manner.
One open question is whether basic tails can distin-

guish between DNA and RNA. The AT-hook, defined as
G-R-P core flanked by basic arginine and/or lysine resi-
dues, binds DNA and is found in many nuclear, DNA-
binding proteins [121, 122]. However, this motif has
been recently shown also to bind RNA [123–126]. Fur-
thermore, an extended AT-hook (Table 1), occurring in
tens of mouse and human proteins, binds RNA with
higher affinity than DNA [127]. This motif from Prostate
Tumor Overexpressed 1 (PTOV1) was shown to bind
structured RNA, in agreement with the previously
known property of basic tails to bind in the minor
groove of double stranded DNA [116, 120]. Therefore,
different types of disordered sequences may be able to
recognise both RNA and DNA, albeit they may have
preference for one.

A role for disordered regions of RBPs in retaining
RNA in membraneless granules
RNA processing and storage is often undertaken in the
context of dynamic, membraneless organelles that vary
in size, composition, and function. These organelles in-
clude the nucleolus, PML bodies, nuclear speckles and
cajal bodies in the nucleus as well as P–bodies, stress
and germ granules in the cytoplasm [128–130]. RNA
granule formation relies on a spatiotemporally con-
trolled transition from disperse “soluble” RNA and pro-
tein state to a condensed phase [131, 132]. The lack of a
membrane allows a direct, dynamic and reversible ex-
change of components between the cytoplasm and the
granule [131]. The rate of exchange and localisation of a
protein within a granule can be markedly different de-
pending on granule composition and the intrinsic prop-
erties of the protein [133–136]. RNA granules have
roles in RNA localisation, stability, and translation, and
perturbations in their homeostasis are hallmarks of nu-
merous neurological disorders [137, 138].
Several recent studies have shown that disordered, low

complexity regions in a number RBP have a capacity to
form such granules [131, 139–141]. Different low

complexity regions can promote RNA granule forma-
tion. For example, the disordered RG-rich sequence of
LAF-1 (DDX3) was demonstrated to be both necessary
and sufficient to promote P-granule formation in C. ele-
gans [142]. Similarly, the RG/GR and FG/GF disordered
tail of human RNA helicase DDX4 (aka Vasa) aggregates
in vivo and in vitro [130]. Furthermore, the [G/S]Y[G/S]
and poly glutamine (polyQ) motifs, which are present in
a broad spectrum of RBPs, are necessary and sufficient
to cause aggregation in vitro and in vivo [139, 140,
143–146]. It remains unclear how RNA binding by
these sequences influences granule formation. Illus-
trating this idea, the RG-rich region of LAF-1 displays
direct RNA–binding activity in addition to granule
formation capacity. While RNA is not required for
LAF-1 driven aggregation, it increases the internal dy-
namics of these LAF-1 droplets, making them more
fluid [142]. In yeast, formation of P-body-like granules
by the Lsm4 disordered region requires the presence
of RNA [147]. Notably, the biophysical properties of
RBP droplets can be altered by the presence of differ-
ent RNA species [148]. A recent work reports an
additional layer of complexity in the interplay be-
tween nucleic acids and granules. While single-
stranded DNA is retained in DDX4-induced granules,
double-stranded DNA is excluded, suggesting some
degree of nucleic acid selectivity [130]. Given the bio-
physical similarities between DNA and RNA, it is
possible that granules formed by analogous low com-
plexity sequences also retain single stranded over
double stranded RNA.
Interestingly, different types of low complexity se-

quences may help to form different types of aggregates
and ways to embed RNA. A recent study showed that
while low complexity sequences promote formation of
both P-bodies and stress granules in yeast, these granules
differ in their dynamic properties, P-bodies displaying
more dynamic/fluid phase transition than more solid-like
stress granules [147]. Granule structure, composition, and
age can affect the biophysical properties of the granules
[135, 136]. There is considerable overlap in the compos-
ition of different RNA granules [149]. Different propor-
tions of such components may lead to the existence of a
continuum of granule types with increasingly distinct
physicochemical properties. In summary, it is clear that
protein disorder has a role in formation of RNA granules.
The importance of direct interaction between disordered
regions and RNA in the context of granules remains to be
determined.

Modulating interactions between disordered
regions and RNA
Post-translational modifications can modulate protein’s
interaction properties [150]. A number of disordered RNA-
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binding regions are known to be post-translationally modi-
fied (Table 1, Additional file 1: Figure S1) and some of these
modifications can modulate RNA-binding affinity or cause
local structural changes. For example, methylation of argi-
nines of the RNA-binding RGG-box in the RNA export
adapter ALY/REF reduces its affinity for RNA [151]. Argin-
ine methylation of the RGG-box of the translational regula-
tor FMRP affects interaction with target RNA as well as its
polyribosome association [76, 152]. Also the RNA-binding
basic patch of HIV protein Rev is methylated, which
changes its interaction dynamics with its target RNA
[153, 154]. Serine phosphorylation at the RNA-binding
RS repeats of SRSF1 and DDX23 has been shown to in-
duce a partial structuring of this region, which may impact
their RNA-binding properties [36]. Assembly of RNA gran-
ules can also be modified by phosphorylation or methyla-
tion of the low complexity region [130, 155, 156]. In
summary, occurrence of post-translational modifications at

disordered regions represents an additional layer of regula-
tion of RNA binding and metabolism (Fig. 3).
In other contexts, it is known that alternative splicing can

alter the sequence and function of proteins. Several global
analyses have reported that short, regulatory sequences such
as sites for post-translational modifications and protein-
protein interactions are often subjected to alternative spli-
cing [157–159]. Could protein-RNA interactions be regu-
lated in a similar manner? A number alternative isoform
variants catalogued in large-scale studies affect RNA-
binding disordered regions (Table 1, Additional file 1: Figure
S1). As an illustrative example, alternative splicing of mouse
ALY/REF selectively includes or excludes the RNA-binding
RG-rich region, resulting in changes in its targeting to nu-
clear speckles and an increased cytoplasmic distribution
[57, 60]. Alternative splicing affecting a region adjacent to
the FMRP RGG-box influences the protein’s RNA-binding
activity [160], reduces its ability to associate with

a

b

Fig. 3 Models for properties of protein disorder in RNA binding. a Attributes of disordered protein regions in RNA interactions. b Post-translational
modification and alternative splicing can modulate RNA-binding
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polyribosomes [161], and can also impact RGG-box methy-
lation [162]. Another splice isoform results in ablation of
the RGG-box as a result of a translational frameshift, which
induces nuclear distribution of the protein [163]. Also RNA
granule formation can be differentially regulated in different
tissues though selective splicing isoforms including or ex-
cluding granule-forming low complexity regions [164]. Al-
though to our knowledge a genome-wide analysis is still
outstanding, these anecdotal examples hint that
alternative splicing may operate to alter disorder-RNA
interactions in a global manner (Fig. 3).
RNA-binding activity can also be modulated by competi-

tive or cooperative interactions (Table 1, Fig. 3). The ability
of some disordered regions to mediate protein-protein or
protein-DNA interactions in addition to protein-RNA in-
teractions could provide additional means to regulate RBP
function. Therefore, disordered regions, although neglected
for decades, have the potential to emerge as dynamic medi-
ators of RNA biology.

Conclusions
Why disorder?
We have discussed the contribution of RS-, RG-, and K/
R-rich, disordered regions to RNA interactions, and
given examples of how they participate in co- and post-
transcriptional regulation of RNA metabolism; how de-
fects in these interactions can lead to disease; and how
disorder in RBPs can be utilised by viruses during their
infection cycle. Disordered regions are emerging as malle-
able, often multifunctional RNA-binding modules whose
interactions with RNA range from non-specific to highly
selective with defined target sequence or structural re-
quirements (Fig. 3). How specificity is generated for RNA
sequences or structures by disordered RNA-binding re-
gions remains to be determined. Specific interactions with
defined RNA structures have been demonstrated in some
instances. It seems likely that specificity and affinity can
be increased by oligomerisation and through the combina-
torial modular architecture of RBPs. Disorder may be a
spatially cost-effective way of encoding general affinity for
RNA and/or structural flexibility to enable co-folding in
presence of the target RNA, thus allowing multiple bind-
ing solutions not easily achievable by structured domains.
Because disorder-mediated interaction with RNA typically
relies on physicochemical properties of short stretches of
sequence, they can be easily regulated through post-
translational modifications. Disorder may also endow spe-
cial properties such as propensity to form RNA granules
and interact with other RBPs. Here we have grouped the
RNA - binding disordered regions based on their amino
acid composition. It is possible that other functional
RNA-binding motifs with unobvious sequence patterns
remain to be discovered.

Outstanding questions
Much remains to be learnt about disorder-mediated
protein-RNA interactions. How do disordered regions
interact with RNA? How many functionally relevant
disorder-RNA interactions exist? Can more refined mo-
tifs be identified among the different classes of RNA-
binding disordered regions? Are there further subclasses
of motifs within RS-, RG-, basic, and other RNA-binding
disordered regions with distinct binding characteristics?
How is RNA binding regulated post-translationally, by
alternative splicing, or by competitive interactions with
other biomolecules? How do mutations in disordered re-
gions involved in RNA binding cause disease? Funda-
mental principles of disorder-RNA interactions are likely
to have close parallels to what has been elucidated for
protein-protein and protein-DNA interactions, where
disorder-mediated regulation has received much more
attention over the past decade [111, 165–170]. Thus, the
conceptual framework to start answering questions on
the role of protein disorder in RNA binding already has
a firm foundation.

Concluding statement
Structure-to-function paradigm [171] has persisted long
in the field of protein-RNA interactions. In this review,
we have highlighted the important role that disordered
regions play in RNA binding and regulation. Indeed, the
recent studies on mammalian RNA-binding proteomes
place disordered regions at the centre of the still
expanding universe of RNA-protein interactions. It is
thus time to embark on a more systematic quest of dis-
covery for the elusive functions of disordered protein re-
gions in RNA biology.

Additional file

Additional file 1: Figure S1. Properties of RNA-binding, disordered
proteins. Disorder and charge profiles for proteins listed in Table 1. The
disordered, RNA-binding regions (RBR) are marked in blue in the left
panel, and their sequence given in the right panel. Amino acid sequence,
GO terms, and annotations for protein domains, isoforms, and post-
translational modifications (PTMs) were extracted from UniProt [250].
Disorder was calculated using IUPred [172] using default values. Score
above 0.4 indicates the region is intrinsically disordered (in physiological
conditions). Charge was calculated using EMBOSS charge [251] using
default values. PTMs: A, acetylation; M, methylation; P, phosphorylation; O,
other. See Table 1 for literature references for each protein. (PDF 904 kb)
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