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Abstract

Background: Cyclic nucleotides have been shown to play important signaling roles in many physiological
processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-
dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely
due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and
phosphodiesterases that are the main targets of cyclic nucleotides in animals.

Methods: An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis
thaliana. The identified proteins were subjected to a computational analysis that included a sequence,
transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic
nucleotide signaling.

Results: A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes
in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain
putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by

nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the
defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that
produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP

and nitric oxide treatment.

Conclusions: We propose that the identified proteins function together as points of cross-talk between cyclic
nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.

Keywords: cAMP, cGMP, Cross-talk, Cyclic nucleotide, Defence response, H,O,, Hypersensitive response, Nitric oxide,

Reactive oxygen species, Second messenger

Background

The sessile nature of plants demands that they are able to
detect and rapidly adapt to changes in their environment.
Second messengers are critical to this adaptation as they
relay extracellular environmental and developmental signals
into intracellular information that is decoded into appropri-
ate physiological responses. A suite of small, transient
molecules function as plant second messengers including
calcium, cyclic nucleotides (CNs), phospholipids, cyclic
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ADP ribose, reactive oxygen species (ROS), nitric oxide
(NO) and changes in cytosolic pH [1-3].

The CNs, adenosine 3’, 5'-cyclic monophosphate
(cAMP) and guanosine 3’, 5'-cyclic monophosphate
(cGMP) are well characterized and conserved second
messengers that have important functional roles in pro-
karyotes and eukaryotes [4]. In animals, CNs are synthe-
sised in response to extracellular signals that activate
intracellular nucleotidyl cyclases (NCs) which catalyse
the synthesis of cCAMP and cGMP from their respective
nucleotide triphosphate substrates, adenosine triphos-
phate (ATP) and guanosine triphosphate (GTP). These
CNs bind to and activate CN binding proteins (CNBPs)
including cAMP- and cGMP-dependent protein kinases
(PKA and PKG) which are considered to be the main
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effectors of CN signaling in animals [5]. In addition,
CNs bind to CN-gated and hyperpolarization-activated
CN-modulated channels (CNGCs and HCNs) which
have specialized roles in sensory perception and control
of rhythmicity, respectively [6]. Finally, intracellular CN
concentrations are tightly regulated by phosphodiester-
ases (PDEs) that bind and metabolize cAMP and ¢cGMP
to inactive nucleotide monophosphates [4].

Sequence and structural analysis of bacterial and animal
CNBPs indicate that CNs bind to conserved CN binding
domains (CNBDs). Although different types of CNBPs have
been discovered across kingdoms, only two evolutionary
distinct CNBDs have been characterized: 1) the CNB
domain, present in PKA, PKG, CNGCs, HCNs and the
Escherichia coli transcription factor, catabolite activator
protein (CAP) and 2) the GAF domain, so called because it
is found in cGMP binding PDEs, Anabaena adenylyl
cyclase and E. coli FhlA [7].

For decades the presence of CNs in plants was debated
[4] but it was not until mass spectrometry (MS) methods
were employed that the existence of CNs in plants was
proven unequivocally [8]. Since then CNs have been impli-
cated in phytochrome signaling during chloroplast develop-
ment [9], stomatal movements [10, 11] and responses to:
plant hormones [12, 13], ozone [14], NO [12, 15, 16] and
abiotic and biotic stresses [17, 18]. Despite this, CN signal
transduction in plants is poorly understood because the
upstream and downstream components of the pathway
remain elusive.

Recently, progress has been made toward the discovery
of upstream NCs in plants. Alignment of the catalytic
domains of NCs across kingdoms has identified con-
served, functionally important amino acids that have
been used to construct rational search motifs to query
plant genomes and identify candidate NCs [19-21]. To
date six putative plant NCs, identified in this way, have
been recombinantly expressed and shown to produce
CNs in vitro [19, 22-26]. Additionally, overexpression of
one of the NC candidates, the phytosulfokine receptor,
in protoplasts results in a 20 fold increase in cGMP
levels demonstrating that this receptor has NC activity
in vivo [24].

Less is known about downstream CN signaling mecha-
nisms in plants. While CN binding activity and CN-
modulated protein activity has been demonstrated in oat
and morning glory, the corresponding CNBPs have not
been identified [27, 28]. Bioinformatics searches for CNBDs
in plants, have failed to identify homologs of animal PKA,
PKG or PDEs [7]. Plants do however possess an expanded
family of CNGCs which suggests that these are the main
targets of CN signaling in plants [29]. Other plant proteins
that harbour the canonical CNB signature include a family
of shaker-type K* channels, acetyl CoA thioesterases, a pro-
tein phosphatase 2C (PP2C) and the Na'/H" antiporter,
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SALT OVERLY SENSITIVE 1 (SOS1) [7]. There is experi-
mental evidence to support CN-mediated regulation of
CNGCs and K* channels [30, 31], however the function of
the CNB site in acetyl CoA thioesterases, PP2C and SOS1
has not yet been explored. On the other hand, GAF do-
mains have been identified in plant phytochromes and
ethylene receptors [7]. The fact that CNs play a role in
phytochrome signaling suggests these GAF domains are
functional [9]. Similarly, ethylene receptors resemble bac-
terial histidine kinases that contain functional GAF do-
mains [32] and there is some evidence that cGMP plays a
role in ethylene signaling [14]. While CNB and GAF do-
mains have been identified in a number of plant proteins,
there is little direct evidence that CNs bind and regulate
the activity of these proteins.

Plant CNGCs have been studied extensively and
shown to facilitate CN activated Na*, K* and Ca** cur-
rents [33-38]. Furthermore, cngc mutants have revealed
functional roles for CNGCs in plant defence against
pathogens and particularly the hypersensitive response
[39-42], leaf senescence [43], floral transition [44, 45],
germination [46], salt tolerance [47, 48], heavy metal tol-
erance [49], thermotolerance [37, 50], starch accumula-
tion and growth [51, 52], gravitropism [53], polarized tip
growth of pollen [54], pollen tube guidance [55], stress
tolerance in pollen reproductive development [56] and
male reproductive fertility [57]. Additionally, CNGCs
have been localized to guard cells suggesting that they
play a role in stomatal movements [38]. While CNGCs
certainly function in a wide array of physiological pro-
cesses in plants, the question of whether these are the
only effectors of plant CN signalling remains to be
answered.

Recent studies have demonstrated that exogenous CN
treatment induces changes in the plant transcriptome
[58, 59] and phosphoproteome [60] supporting that CNs
modulate downstream targets in plants, similar to pro-
karyotes and other eukaryotes. However, the apparent
lack of plant CN-dependent protein kinases and tran-
scription factors suggests that the mechanism by which
CNs mediate their effects in plants differs from that in
prokaryotes and other eukaryotes. Clearly, the identifica-
tion of downstream CNBPs is essential to advance our
understanding of CN signaling pathways in plants. In
the past decade, experimental strategies using synthetic
CNs to affinity purify CNBPs have been developed to
gain insight into CN signaling in animals. These strat-
egies have been successfully used to isolate known
CNBPs (PKA, PKG, PDE, CNGC, HCN and CAP) and
identify novel PKA-associated scaffold proteins [61, 62].
Here, we have adapted and applied this methodology to
identify CNBPs in Arabidopsis thaliana. Twelve CNBPs
have been successfully identified and their potential role
in plant CN signaling investigated.
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Methods

Plant material

Arabidopsis Col-0 was grown in a peat/vermiculite mixture
at 22 °C and 55 % humidity under a 16 h light (100 uM
photons m ™ s7%) 8 h dark cycle. After four weeks, leaf tis-
sue was harvested. Arabidopsis Col-0 callus cell cultures
were grown shaking at 23 °C under continuous light in
Gamborg’s B5 media with vitamins, 2 % (w/v) sucrose,
0.05 % (w/v) 4-morpholineethanesulfonic acid, 0.5 mg 1™
2,4-dichlorophenoxyacetic acid, 50 pg 1™ kinetin at pH 5.7.
Cells were sub-cultured weekly, grown for nine days then
collected by filtration.

Chemicals

Synthetic CN baits: 2-(6-aminohexylamino) cAMP agar-
ose (2-AHA-cAMP-agarose); 8-(2-aminoethylamino)
cAMP agarose (8-AEA-cAMP-agarose); 2-(6-[Biotinyl]
aminohexylamino) cAMP (2-[Biotin]-AHA-cAMP); N2-(6-
aminohexyl) cGMP agarose (2-AH-cGMP-agarose); 8-(2-
aminoethylthio) cGMP agarose (8-AET-cGMP-agarose);
N2-(6-[Biotinyl] aminohexyl) c¢GMP (2-[Biotin]-AH-
c¢GMP) and the ethanolamine agarose (EtOH-NH-agarose)
negative control were purchased from BioLog Life Science
Institute (Bremen, Germany). Dynabeads® MyOne™ Strepta-
vidin C1 and Dynabeads® Co-Immunoprecipitation kit were
purchased from Invitrogen/Dynal (Oslo, Norway). THE™
cAMP and THE™ c¢GMP antibodies were purchased from
GenScript (Piscataway, NJ).

Affinity purification overview

Leaf and callus proteins were incubated with four differ-
ent baits for either cAMP or ¢cGMP. The cAMP baits
were: 2-AHA-cAMP-agarose; 8-AEA-cAMP-agarose; 2-
[Biotin]-AHA-cAMP and cAMP antibodies while the
cGMP baits were: 2-AH-cGMP-agarose; 8-AET-cGMP-
agarose; 2-[Biotin]-AH-cGMP and c¢GMP antibodies
(Additional file 1). The synthetic CN baits differed in
their linkers (hexyl or ethyl), linkage positions to the nu-
cleotide moiety (2 or 8) and scaffolds (biotin or agarose)
and were used to eliminate non-specific binding associ-
ated with using a single bait. The antibody baits pulled
down proteins bound to endogenous CNs and were used
to confirm findings with the synthetic CNss.

Protein extraction

Approximately 5 g leaf or callus tissue was ground to a fine
powder in liquid nitrogen and dissolved in 10 ml assay
buffer: 50 mM Tris—HCl pH 7.4, 0.25 M sucrose, 1 mM
ethylenediaminetetraacetic acid, 0.1 mM MgSO,.7H,0,
10 mM KCl, 5 mM ascorbic acid, 1 mM phenylmethane-
sulfonyl fluoride, 1 x protease inhibitor cocktail (Sigma
P9599). Insoluble 0.5 % (w/v) poly (vinylpolypyrrolidone)
was added to remove polyphenols. The protein extracts
were centrifuged at 12 000 x g for 20 min at 4 °C to obtain
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a clarified supernatant. The protein concentration of the
supernatant was determined, as described previously [63]
to be approximately 1 mg ml™. The leaf or callus protein
extracts were divided into nine 1 ml aliquots and affinity
purified using the four different cAMP baits, four cGMP
baits and negative control.

Affinity purification

Agarose baits

In pull-down experiments with agarose baits, 200 pl
beads were used, corresponding to approximately 1 nmol
cAMP or cGMP. The agarose beads were equilibrated
with 1 ml assay buffer in an Eppendorf tube for 2 h at
4 °C with gentle agitation on a rotator at 40 rpm. The
beads were collected by centrifugation at 100 x g for 30 s
and the assay buffer removed. Approximately 1 mg leaf
or callus proteins (1 ml protein extract) were incubated
with the pre-equilibrated agarose beads for 4 h at 4 °C,
with gentle agitation. The protein-bound beads were col-
lected by centrifugation and affinity purified proteins
processed as described below.

Biotin baits

In pull-down experiments with biotin baits, 1 mg
streptadvin-linked dynabeads (capable of binding
2.5 nmol biotin) were used. These were equilibrated
with 1 ml assay buffer in an Eppendorf tube for 2 h at
4 °C with gentle agitation on a rotator at 40 rpm, then
collected with a Dynamag magnet and the assay buffer
removed. Concurrently, approximately 1 mg leaf or
callus proteins were pre-incubated with 1 nmol 2-
[Biotin]-AHA-cAMP or 2-[Biotin]-AH-cGMP for 1 h
at 4 °C with gentle agitation. The biotin-bound pro-
teins were then incubated with the pre-equilibrated
streptavidin-linked dynabeads for 4 h at 4 °C, with
gentle agitation. The protein-bound dynabeads were
collected with a Dynamag and affinity purified pro-
teins processed as described below.

Antibody baits

Antibody-coupled dynabeads were generated by cova-
lently coupling 50 pg cAMP or cGMP antibody to 8 mg
Dynabeads® M-270 Epoxy using the Dynabeads® Co-
Immunoprecipitation kit, according to the manufac-
turer’s instructions. In each immunoaffinity purification
experiment 4 mg antibody-coupled dynabeads were
used. The antibody-coupled dynabeads were equili-
brated with 1 ml assay buffer for 2 h at 4 °C with gentle
agitation on a rotator at 40 rpm then collected with a
Dynamag and the assay buffer removed. Approximately
1 mg leaf or callus proteins were incubated with the
pre-equilibrated antibody-coupled dynabeads for 4 h at
4 °C, with gentle agitation. The protein-bound



Donaldson et al. Cell Communication and Signaling (2016) 14:10

dynabeads were collected with a Dynamag, and affinity
purified proteins processed as below.

Affinity purified protein processing

The protein-bound agarose or dynabeads were washed six
times with 1 ml assay buffer then subjected to a sequential
elution series of increasing stringency and the elution and
bead fractions collected, as described previously [63]. The
protein concentration of the elution fractions was low, so
proteins were precipitated, as described previously [63].
The elution and bead fractions were separated by sodium
dodecyl sulphate-polyacrylamide gel electrophoresis and
fractionated proteins processed by in-gel tryptic digest, as
described previously [63].

Mass spectrometry

Dried peptides were reconstituted in 12 pl 0.1 % (v/v)
formic acid (FA), 5 % (v/v) acetonitrile (ACN) and ana-
lysed using a Q-TRAP 5500 mass spectrometer (Applied
Biosystems, Foster City, CA) connected to a Proxeon
nano-liquid chromatography system. For each sample,
5 ul was loaded onto a reverse phase C18 trap column,
washed, then eluted at 500 nl min™" using a 3 uM 200°A
Magic C18AQ online analytical column connected to a
captive-spray source (Michrom, Auburn, CA). Peptides
were eluted in a linear gradient of 5-40 % ACN, 0.1 %
FA for 25 min; a linear gradient of 40-80 % ACN, 0.1 %
FA for 5 min then an isocratic gradient of 80 % ACN,
0.1 % FA for 15 min. Eluted peptides were analysed
online by electrospray ionization-MS using Analyst (ver-
sion 1.5.2) to select MS scans of m/z 300-1000. Each
MS scan went through four rounds of MS/MS with dy-
namic exclusion. The MS/MS data were compared to
the Arabidopsis_TAIR10 protein database using Mascot
(version 2.3) and results compiled with Scaffold (version
3.6). Positive matches had a peptide identification prob-
ability of 95 % and corresponding proteins were repre-
sented by at least two peptides with a protein
identification probability of 99 %.

Alignment of candidate proteins with cyclic nucleotide
binding domains

Representative CNB domains were downloaded from
Interpro (IPR000595) for sequence analysis including Homo
sapiens: PKAla [EMBL:P10644]; PKGI [EMBL:Q13976];
HCN1 [EMBL:060741]; CNGCB1 [EMBL:P29973]; CNGC
al [EMBL:Q14028]; exchange protein activated by cAMP
(EPAC) 1 [EMBL:095398] and EPAC2 [EMBL:Q8WZA?2]
and E. coli: CAP [EMBL:POAC]8]. GAF domains were re-
trieved by BLAST searches including H. sapiens: PDE2
[EMBL:000408] and PDE5 [EMBL:076074]; Anabaena sp.
PCC 7120 adenylyl cyclases: CYAB [EMBL:P94181] and
CYAC [EMBL:P94183] and E. coli: FhlA [EMBL:P19323].

Page 4 of 18

Alignments were performed with the Molecular Evolution-
ary Genetic Analysis (MEGA) 5 program [64].

Computational analysis of cyclic nucleotide binding
proteins

Transcriptional co-expression analysis

A transcriptional co-expression analysis was conducted
using the Expression Angler tool in Botany Array Resource
[65] to determine the level of co-expression shared by each
of the candidate CNBPs. The analysis was performed
against the NASCArrays 392 microarray dataset, using each
of the 12 candidate CNBPs as the driver gene and extract-
ing correlated genes with r values between 0.7-1.0. An
expression correlation matrix was constructed using the
correlated gene list for each CNBP driver gene and extract-
ing r-values for the other candidate CNBPs (Table 3).

Differential expression analysis

Genevestigator [66] was used to identify experimental
conditions that induced the differential expression of the
ten expression correlated CNBP candidates from Table 3.
Normalised microarray experiments were downloaded
from Gene Expression Omnibus [67]: light/dark
(GSE9728), Pseudomonas syringae pv maculicola (Psm)/
mock (GSE18978), Pseudomonas syringae pv tomato
(Pst) DC3000/mock and Pst DC3000 hrpA/mock
(GSE5520). The nitrate starved/replete experiment was
downloaded from [68]. Data was processed in excel to
generate log, fold change ratios and heat maps were
constructed with the MultiExperiment Viewer tool in
TMev [69].

Glycolate oxidase assay

Leaves of four week old Arabidopsis were pressure infil-
trated with either 10 mM MgCl, (control) or 10° colony
forming units (cfu) ml™ Pst DC3000 or Pst DC3000
AvrRpm1. For ¢cGMP and NO treatments, 50 pM 8-Br-
c¢cGMP and/or 50 pM diethylamine NONOate were co-
infiltrated with MgCl, or Pst. GOX activity was measured
in Pst infected and control plants. Three leaves from each
plant were collected 24 h post infection since GOX activity
has been shown to contribute to Pst-induced H,O, produc-
tion within this time frame. Leaves were ground to a fine
powder in liquid nitrogen then added to 500 pl protein ex-
traction buffer and processed as described previously [70].
Briefly, GOX activity in the protein extract catalyses the
conversion of the sodium glycolate substrate to glyoxylate,
releasing HyO,. The H,O, reacts with O-dianisidine in the
presence of horseradish peroxidase to produce the coloured
O-dianisidine radical which can be quantified spectro-
photometrically at 440 nm [71].
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Results

Identification of candidate cyclic nucleotide binding
proteins

Arabidopsis leaf and callus protein extracts were incu-
bated with four different baits for cAMP or cGMP and
the interacting proteins were purified as described
previously [63]. A range of baits was used to ensure
that specific interactions between proteins and CNs
were identified (see Methods) and a sequential elution
series was used to displace low affinity binding pro-
teins [61]. A total of 119 proteins were identified from
leaf and callus protein extracts, after subtracting pro-
teins that were pulled down with the negative control
bait (Additional file 2). The list was filtered to identify
the best candidate CNBPs. Briefly, only proteins that
were identified with more than one type of bait and
that survived the stringent elution process were
retained, producing a final list of 13 candidate CNBPs
(Table 1; corresponding peptides in Additional file 3).
The candidate CNBPs bound tightly to the baits and
were not displaced during the sequential elution
process. None of the candidate CNBPs bound select-
ively to the cAMP or cGMP baits. Of the 13 proteins
identified, 11 were specific to leaf, one was found in
both leaf and callus and one was unique to callus. Not-
ably, 12 of the 13 CNBP candidates were purified with
CN-specific antibodies supporting that these proteins
bind endogenous CNs. The 13 candidate CNBPs iden-
tified were subsequently analysed for potential roles in
CN signaling.

Candidate CNBPs have putative cyclic nucleotide binding
domains

The candidate CNBPs were queried against the UniProt
and Interpro databases [72, 73] to determine whether
they contain binding domains or binding sites for cyclic
or similar nucleotides. During this analysis it was noted
that peptides mapping to SECRETION ASSOCIATED
RAS 1B do not retrieve a single protein but rather a
family of similar proteins. As it is impossible to deter-
mine which of these bound the bait, all were excluded
from further analysis. The search revealed that none of
the candidate CNBPs are annotated to bind CNs. How-
ever, several candidate CNBPs are annotated to bind
adenine and guanine containing nucleotides (Table 2).
The ATP binding proteins include EUKARYOTIC
TRANSLATION INITIATION FACTOR 4A1 (EIF4Al),
PHOSPHOGLYCERATE KINASE 1 (PGK1) and CASEI-
NOLYTIC PROTEASE C HOMOLOG 1 (CLPC1). The
NAD/NADP binding proteins include GLYCERALDE-
HYDE-3-PHOSPHATE DEHYDROGENASE B SUBUNIT
(GAPB), CHLOROPLAST STEM-LOOP BINDING PRO-
TEIN OF 41 kDa (CSP41B) and PROTOCHLOROPHYL-
LIDE OXIDOREDUCTASE B (PORB). Finally, RAS-
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RELATED IN BRAIN GTPase HOMOLOG E1b (RABE1b)
binds GTP (Table 2). The remaining candidate CNBPs have
no known affinity for other nucleotides including GLYCO-
LATE OXIDASE (GOX1), TRANSKETOLASE (TKL),
SERINE HYDROXYMETHYLTRANSFERASE 1 (SHMT1),
ATP SYNTHASE DELTA-SUBUNIT (ATPD) and CAR-
BONIC ANHYDRASE 1 (CA1l).

To investigate whether the candidate CNBPs contain
potential CNBDs, their sequences were aligned with
known CNBDs. To achieve this, CNB domains were ex-
tracted from representative organisms across kingdoms
including human, mouse, chicken, frog, fish, fly, worm,
slime mould, protozoa, yeast, bacteria, cyanobacteria,
algae, moss, Arabidopsis and rice. Since the GAF do-
main is less constrained than the CNB domain, only
published GAF domains from human, yeast, bacteria,
cyanobacteria, Arabidopsis and sorghum [74-78] were
considered. More than 200 CNB sequences and 50 GAF
sequences were aligned with the identified Arabidopsis
candidate CNBPs (Additional files 3 and 4). The align-
ment results were simplified to show only the candidate
CNBPs that did align with select CNB and GAF domains
from well-known CNBPs (Figs. 1 and 2). Eight of the
candidate CNBPs have sequences that resemble known
CNBDs (CNBD-like sequences) with several candidates
aligning with both CNB and GAF domains (Table 2).
Specifically, CNB-like sequences were identified in PGKI,
GAPB, TKL, SHMT1 and PORB while GAF-like se-
quences were identified in EIF4A1, PGK1, GAPB, TKL,
SHMT1, GOX1 and CA1l. Only RABE1b, CLPC1, ATPD
and CSP41B did not align with either CNBD. Thus, eight
of the 12 candidate CNBPs contain CNBD-like sequences,
validating the experimental approach.

Candidate CNBPs are modified by nitric oxide

An investigation of The Arabidopsis Information Resource
(TAIR) database revealed that a number of the candidate
CNBPs are annotated to be post-translationally modified
(PTM) by NO. Further investigation of the literature re-
vealed that ten of the candidate CNBPs have been experi-
mentally determined to be modified by NO with several
being modified by both S-nitrosylation and Y-nitration
[79-82] (Table 2). Specifically, EIF4A1, PGK1, GAPB,
RABE1b, TKL, CSP41B and CA1l are modified by S-
nitrosylation while GAPB, RABE1b, TKL, SHMT1, GOX1,
CSP41B, PORB and CA1 are modified by Y-nitration. Of
the ten NO-modified candidate CNBPs, seven also contain
CNBD-like sequences. For two of the ten NO-modified
candidate CNBPs, TKL and CA1l, the PTM site has been
determined [81, 83]. In TKL, the modified tyrosine (Y337)
lies within the putative CNB domain (Table 2) and this
tyrosine is conserved in CNB domains of E. coli CAP and
type II PKAs (Fig. 1, Additional file 4). Similarly, in CA1
the nitrosylated C280 lies within the GAF domain and a



Table 1 Arabidopsis cyclic nucleotide binding protein candidates

LEAF cAMP LEAF cGMP CALLUS cAMP CALLUS cGMP
Accession Description 2-AHA-  8-AEA-  2-[Biotin]- cAMP 2-AH-  8-AET-  2-[Biotin]- cGMP 2-AHA-  8-AEA-  2-[Biotin]-  cAMP 2-AH-  8-AET-  2-[Biotin]- cGMP
CAMP-  cAMP-  AHA- antibody cGMP-  cGMP-  AH-cGMP antibody cAMP-  cAMP-  AHA-cCAMP antibody cGMP-  cGMP-  AH-cGMP antibody
agarose agarose CAMP agarose agarose agarose agarose agarose agarose
AT3G13920 eukaryotic translation B B B B B B B B B B B
initiation factor 4A1
AT3G12780 phosphoglycerate kinase 1 B B B B B B B B
AT1G42970 glyceraldehyde-3-phosphate B B B 2,3,B B B B B
dehydrogenase B subunit
AT4G20360 RAB GTPase homolog E1B B B B 2,3, B B B B B
AT3G60750 Transketolase B B B B B B B
AT5G50920 CLPC homologue 1 B B B B B B B
AT4G37930 serine 2,B B 1,B B B B 2,3,B
transhydroxymethyltransferase
1
AT3G14420 Glycolate oxidase 1 B B B B
AT4G09650 ATP synthase delta subunit B B B B
AT1G09340 chloroplast stem-loop binding 1 B B 2,B
protein of 41 kDA
AT1G56330 secretion-associated RAS 1B B B B
AT3G62560
AT4G02080
AT4G27440 protochlorophyllide B B B
oxidoreductase B
AT3G01500 carbonic anhydrase 1 B B

The fraction in which the protein was identified is indicated with numbers 1-6 being the elution fractions (1 denotes the first and least stringent elution and 6 the final and most stringent elution) while B indicates
that the protein was found in the bead fraction. For the cAMP baits the elutions were 1) 100 mM GDP; 2) 100 mM AMP; 3) 10 mM cGMP; 4) 100 mM cGMP; 5) 10 mM cAMP and 6) 100 mM cAMP. For the cGMP baits
the elutions were 1) 100 mM ADP; 2) 100 mM GMP; 3) 10 mM cAMP; 4) 100 mM cAMP; 5) 10 mM cGMP and 6) 100 mM cGMP
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Table 2 Binding properties of the cyclic nucleotide binding protein candidates

Accession  Description Nucleotide Nucleotide binding Nucleotide binding site  Alignment with Putative NO PTM Site of NO
binding domain CNBD CNBD PTM
AT3G13920 eukaryotic translation ATP 58-255 83-90 GAF 174-399 S-nitrosylation
initiation factor 4A1
AT3G12780 phosphoglycerate kinase 1 ATP 432-435 CNB GAF 87-286 S-nitrosylation
171-335 S-nitrosylation™®
AT1G42970 glyceraldehyde-3-phosphate NAD (P) 80-243 91-92 CNB GAF 173-323 S-nitrosylation
dehydrogenase B subunit 83-288 Y-nitration
AT4G20360 RAB GTPase homolog E1B GTP 77-278 86-93 148-152 203- S-nitrosylation
206 S-nitrosylation™®
Y-nitration
AT3G60750 Transketolase CNB GAF 213-408 S-nitrosylation Y337
40-232 Y-nitration
AT5G50920 CLPC homologue 1 ATP 294-434 302-309 645-652
637-818
AT4G37930  serine transhydroxymethyltransferase CNB GAF 369-492 Y-nitration
1 262-458
AT3G14420 Glycolate oxidase 1 FMN 13-355 285-309 GAF 93-276 Y-nitration
AT4G09650 ATP synthase delta-subunit
AT1G09340 chloroplast stem-loop NAD (P) 54-235 S-nitrosylation
binding protein of 41 kDA S-nitrosylation™
Y-nitration
AT4G27440 protochlorophyllide NAD (P) 84-234 CNB 77-279 Y-nitration
oxidoreductase B 270-366
AT3G01500 carbonic anhydrase 1 GAF 141-345 S-nitrosylation €280

S-nitrosylation™™
Y-nitration

Annotated nucleotide binding domains and nucleotide binding sites of the candidate CNBPs were extracted from the Uniprot and Interpro databases. The alignment of the candidate CNBPs with known CNBDs was

extrapolated from Figs. 1 and 2. Evidence of NO-induced PTM and the PTM site was obtained from the literature [79-82]
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* * * * * * * *
HsPKAloa VSFIAGETVIQQG----DEGDN----FYVIDQGE----TDVYVNN TPRAATVKAKTN
HsPKAlab VQFEDGQKIVVQG----EPGDE----FFIILEGS----AAVLQRRSEN------- EEFVEVGRLG------ PSDYFGEIALLMNRP-————————-] RAATVVARGP
HsPKGla VEYGKDSQITIKEG----DVGSL----VYVMEDGK----VEVTKEG-———-—————-——-— VKLCTMGPG-—-—-— KVFGELAILYN-—-—-—-—-----— CTRTATVKTLVN
HsPKGlb THYENG{fﬁIRQG————ARGDT————FFIISKGT————VNVTREDSPSE ——————— DPVFLRTLG-----— KGDWFGEKALQGEDV-————————— RTANVIAAEA
HsHCN1 EVFQPGDYIIREG----AVGKK----MYFIQHGV----AG-VIT----------KSSKE--MKLTD------GSYFGEICLLTK---------— GRRTASVRADTY
HsCNGCal QVYSPGDYICKKG— GSYFGEISILNIKGS----KAGNRRTANIKSIGY
HsSCNGCB1 VVYLPNDYVCKKG----EIGRE----MYIIQAGQ----VQVLGG GGGNRRTANVVAHGF
HsEPACL PHSKAGTVLFSQG----DKGTS—----WYIIWKGS----VNVVT------------HGKGLVTTLH------EGDDFGQLALVNDAP-—————————, RAATIILRED
HsEPAC2a ENLEKGITLFRQG----DIGTN----WYAVLAGS----LDVKVSETSSH----QDAVTICTLGIGT-------— AFG-ESILDN-—--—--—--—-—- TPRHATIVTRES
HsEPAC2b SHAKGGTVLEFNQG----EEGTS----WYIILKGS----VNVVI--—-———————-—— YGKGVVCTLH-----— EGDDFGKLALVNDAP-—-——-—-——— RAASIVLRED
EcCAP HKYPSKSTLIHQG----EKAET----LYYIVKGS----VAVLIKD--------— EEGKEMILSYLNQ-----— GDFIGELGLFEEGQ-—----—-——— ERSAWVRAKTA
PGK1 SADLKGKKVFEFVRA (13) DDTRI—(7) KYLIENGA----KVILSTHLGRP (59) EKNDPEFAKKLASLADLYVNDAFGTAHRAHAST- (7) ————— KPSVAGFLLQK
GAPB DIVIEGTGVFEVDG- (7) QAGASK-VIITAPAKGA----DIPTYVMGVNE- (28) -—--DEEFGLVKGTMTTTHSYTGDQRLLDASHRDL~----RRARAAALNIVPT
TKL ARFNKPDAEVVDH*(7)DGCQM(25)NHISIDGD****TEIAFTENVDQ(45)GYGSPNKAN{i)*f*fSVHGAALGEKEVEATRNNf(7)7FQVPDDVKSHWSRH
SHMT1 TLMERGYELVSGGTD--NHLVL----VNLKPKGIDGSRVEKVLEA-—-——-— VHIASNKNTVPGDVSAMVPGGIRMGTPALTSRGFEV (10) ——-FDKAVTIALKVK
PORB TKSVDGKKTLRKGNVVVTGASS— (7) KALAETGK-—---WNVIMACRDFL- (56) ~—AKEPTYSAEGFELSVATNHLGHFLLARLLLD (14) VGSITGNTNTLAGNV

Fig. 1 Alignment of candidate cyclic nucleotide binding proteins with known CNB domains. Representative CNB domains were obtained from
Interpro (IPR000595) including those from human (Hs) protein kinases PKA1a, PKG1; channels HCN1, CNGCal, CNGCB1; and guanine nucleotide
exchange factors EPACT, EPAC2 and E. coli (Ec) transcription factor CAP. Where the protein has tandem CNB domains these are indicated by the
letters “a” and “b". The number in parenthesis indicates the number of amino acids that have been omitted. The * indicates conserved amino
acids across species. Tyrosine residues that have been circled are sites of Y-nitration. The Arabidopsis CNBP candidates PGK1, GAPB, TKL, SHMT1
and PORB align with the CNB domain. The site of Y-nitration in the CNBP candidate, TKL is found within the CNB domain although it is distant
from the Y-nitration site in human PKG

photorespiration consumes ATP and NADH to regenerate
COy; and is important for limiting photoinhibition, nitrate

nearby cysteine is conserved in all plant and bacterial phy-
tochromes (Additional file 5). This revealed that a number

of candidate CNBPs are modified by NO and, for TKL and
CALl, the PTM site lies within the putative CNBD support-
ing that CNs and NO can modify these proteins at the
same site and presenting a possible mechanism of cross-
talk between these second messengers.

Six of the candidate CNBPs are Calvin cycle and
photorespiratory enzymes

The TAIR descriptions further revealed that a number of
the candidate CNBPs function in the Calvin cycle or photo-
respiration pathway. The Calvin cycle utilizes ATP and
NADPH to assimilate CO, into carbon skeletons [84] while

assimilation and ROS signaling [85]. The positions of the
candidate CNBPs in the Calvin cycle and photorespiration
pathways are illustrated in Fig. 3.

The Calvin cycle is connected to the photorespiration
pathway by RIBULOSE-1, 5-BISPHOSPHATE CARB-
OXYLASE/OXYGENASE (RUBISCO) that either binds
CO, or O, to catalyse the carboxylation or oxygenation of
D-ribulose-1, 5-bisphosphate (RuBP) to initiate the Calvin
cycle or photorespiration, respectively. The balance be-
tween the Calvin cycle and photorespiration is determined,
in part, by the supply of CO, to RUBISCO [85]. This is
controlled by the candidate CNBP, CA1l which converts

PGK1 LVASLPEGGV (5) VREYKEEEKNDPEFAKKLAS

TKL IAQSMTKNRS (7

)
)
)
SHMT1  VVTTTTHKSL (7)
)
)

human PDE5.

* * kKK xRk
HsPDE2a LLLVSEDN-------— LOLSCKVIGDKVLG-—-——=---— EEVSFPLT-GCLGQVVEDKKSIQLKDLT----—-—--—— SEDVQQLQOSMLGCELQAMLCVPVISRATDQVVALACAFNKLEG----— DLFTDEDEHVI
HsPDE2b VFLLRON------ ELVAKVFDGGVVDD--—--=-=- ESYEIRIPADQGIAGHVATTGQILNIPDAYAH----PLFYRGVDDST---GFRTRNILCFPIKN-ENQEVIGVAELVNKIN----- GPWFSKFDEDLA
HsPDE5Sa LFL DSSND-KFLISRLFDVAEGSTLEEVSN-—--- NCIRLEWNKGIVGHVAALGEPLNIKDAYED----PRFNAEVDQIT---GYKTQSILCMPIKN-HREEVVGVAQAINKKSG---NGGTFTEKDEKDF
HsPDES5b IFIVDEDCSD----SFSSVFHMECEELEKSSDTLTR--EHDANKINYMYAQYVKNTMEPLNIPDVSKD----KRFPWTTENTGNVNQQCIRSLLCTPIKNGKKNKVIGVCQLVNKMEENTGKVKPFNRNDEQFL
AnCYAB1 IFLVDYDKC----QLWSKVPQDNGQ-—————————~. KFLEIRTPITVGIPGHVASTGQYLNISETATH----PLFSPELERQM---GYKINNILCMPVVS-SKDQIVAVVQLANKTG----— NIPFNRNDEESF
AnCYAB2 LFLYRKEMG----ELWTKVAAAADTT-————————— QLIEIRIPANRGIVGYVASTGDALNISDAYKD----PRFDPTTDRKT---GYLTRNILCLPVFN-SANELIGVTQLINKQ-—----— QGSFTASDEEFM
AnCYAC1 QAIVDTVGHM (5) VCLLRSFQDGQLVDEGFVYQ (7) EKTIHDSAPLTILADTVWETREVQIIHDVAGDERIHGDSPELQHRNDAFAAADIRSSLVVPLIC--QQELMAVLALHQCSQ---—— ARVWGEEEVQLV
AnCYAC2 LSLWTEEDEFVKCVGLYDSSRHSEDSLDNHRLITQELPESQAPILENPILQEILKTHEPVIITDMNHS———---— DWETKRFDLHLKMPARSLMVVPLLA--DGKCIGSITLREGKR-----ARQWLSADIELA
EcFHLAa QLVKRSALADN-AAIVLWQAQTQRASYYASRE-—----- KDTPIKYEDETVLAHGPVRRILSRPDTLHCS-YEEFCETWPQLVAGGLYPKFGHYCLMPLAA--EGHIFGGCEFIRYDD-----— RPWSEKEFNRL
EcFHLAb HYYFDIDDIS----IVLRSHRKNKLNIYSTHYL (5) AHEQSEVDEAGTLTERVFKSKE-MLLINLHER----DDLAPYERMLFDTWGNQIQTLCLLPLMS--GDTMLGVLKLAQCEEK-~-—--~ VFTTTNLNLL

(
EIF4A1l MFVLDEADEM (7)DQIYDIFQLLPPKIQVGVES (21) LVKRDELTLEGIKQFYVNV (6) LETLCDLYE (24) RSRDETVSATHGDMDONTRDI IMREFRS (18) QQVSLVINFDLPTQ (20) INFVTRDDERML
(11) TAHRAHASTEGVTKFLKPSVAGFLLOKELDYLVG-AVSNPKRPFAATVGGSKVSSKIGVIESL
GAPB  RNFLRCWHGR (7) VVLNDSGGVKNASHLLKYDS (9) KIVDNETISVDGKLIKVVSNRDPLKLPWAELG (37) DIPTYVMGVNEQDYGHDVANT ISNASCT
AAVETVEPTTDSSIVDKSVNSIR--FLAIDAVEKAKSGHPGLPMGCAPMAHILYDE (8) PKNPYWFNRDREVLSAGHGCMLLYALLH
IFFRKGVKEINKQGKEVLYD (21) ITGLAVALKQATTSEYKAYQEQVLSNSAKFA (16) NHLVLVNLKPKGIDGSRVEKVLEAVHIA (8) GDVSAMVPGGIRMGT PALTSRGFVEEDFAKY
GOX1 TSSVEEVAST (7) QLYVYKNRNVVEQLVRRAER (20) DIKNRETLPPNLTLKNFEGLDLGKMDEANDSGLASYVAGQIDRLLSWKDVOWLQTITKLPILY (15) GAAGI IVSNHGARQLDYVPATISALEEVVK
cAl VFACSDSRVC (7 QPGDAFVVRNIANMVPPFDK(zl)IVVIGHSACGGIKGLMSFPLDGNNSTDFIED(19)AFEDQCGﬁff

Fig. 2 Alignment of candidate cyclic nucleotide binding proteins with known GAF domains. Representative GAF domains (IPR003018) include
those from human (Hs) phosphodiesterases PDE2, PDE5; Anabaena sp. PCC 7120 (An) adenylyl cyclases CYAB1, CYAB2, CYACT, CYAC2; and E. coli
(Ec) FhIA. Where the protein has tandem GAF domains these are indicated by the letters “a” and “b". The number in parenthesis indicates the
number of amino acids that have been omitted. The * indicates conserved amino acids across species. The cysteine residues that have been
circled are sites of S-nitrosylation. The Arabidopsis CNBP candidates EIF4A1, PGK1, GAPB, TKL, SHMT1, GOX1 and CA1 align with the GAF domain.
The site of S-nitrosylation in the CNBP candidate CA1 is found within the GAF domain although it is distant from the S-nitrosylation site in

(12) MIFTFYKAQGLSVG----SSLVEEDKLELA
(12) EEFGIVKGTMTTTHS (4) QRLLDASHRDLR
(40) LGOGIANAVGLALAEKHLAARENKPDAEVY
(

REAVNVSLANLLTYPFVR--EGLVKGTLALKGGYYDF (8) GLEFGLSETSSV
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Fig. 3 The Calvin cycle and photorespiration pathway. The CNBP candidates are depicted in red font. Additional photorespiratory enzymes that
were pulled down during the affinity purification procedure but excluded during the stringent elimination process (Table S2) are shown in blue
font, where SAGT is ALANINE: GLYOXYLATE AMINOTRANSFERASE and CAT2 is CATALASE 2. The Calvin cycle and photorespiration pathway are
connected by the dual-functioning enzyme RUBISCO shown in green. The CNBP candidate CA1 interconverts soluble HCO®™ to gaseous CO, and
controls the supply of CO, to RUBISCO and regulates stomatal closure through HCO®™ effects on anion channels thereby further affecting the supply of
CO;, to the plant. The CNBP candidates PGK1, GAPB and TKL are enzymes in the Calvin cycle. PGK1 and GAPB convert Ribulose-1, 5-bisphosphate (RuBP)
into the triose phosphate, D-glyceraldehyde-3-phosphate which can feed into sucrose and starch biosynthesis. TKL is involved in the regeneration of RuBP
and significantly controls carbon flux through the Calvin cycle. The CNBP candidates GOX1 and SHMT1 are enzymes in the photorespiration pathway.
GOX1 catalyses the conversion of glycolate to glyoxylate with the concomitant release of H,O, as a by-product. SHMT1 converts two molecules of glycine

to serine, CO,, NH3 and NADH. This CO, can feedback into the Calvin cycle while NHsz can feed into nitrogen assimilation

HCO? to CO, at the site of RUBISCO [86]. Thereafter, the
initial reductive steps of the Calvin cycle are performed by
PKG and GAPB that convert the product of RuBP carb-
oxylation to a triose phosphate that can feed into sucrose
and starch biosynthesis. Later in the Calvin cycle, TKL re-
generates RuBP and regulation of TKL significantly con-
trols carbon flux through the cycle [84]. Therefore the
candidate CNBPs CA1, PKG, GAPB and TKL are key en-
zymes that regulate the supply, removal and flux of carbon
through the Calvin cycle.

Early in the photorespiration pathway, GOX1 catalyses
the oxidation of glycolate to glyoxylate with the con-
comitant release of H,O,. Later in the pathway SHMT1

converts two molecules of glycine to serine, CO,, NH3
and NADH. Thus the candidate CNBPs, GOX1 and
SHMT1 are key enzymes in the photorespiration path-
way that catalyse reactions whose by-products (H,O,,
NH; and CO,) are important for ROS signaling, nitro-
gen assimilation or feedback to the Calvin cycle.

Candidate CNBPs function in H,0, signaling and defence

While the enzymatic activities of the above six candidate
CNBPs are known and their functions related, there is
little information available for the other six candidate
CNBPs. Moreover, the candidate CNBPs with known en-
zyme activities are involved in primary metabolism so it
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Table 3 Expression correlation matrix of cyclic nucleotide binding protein candidates

EIF4A PGK1 GAPB RABETb TKL CLPC1 SHMT1 GOX1 ATPD CSP41B PORB CA1
1 X X X X X X X X X X X EIF4A
1 0.956 0.876 0.877 0.834 0.893 0.897 0910 0.958 X 0.947 PGK1
1 0.900 0.886 0.783 0.851 0.923 0.922 0973 X 0.940 GAPB
1 0.813 0.736 0.770 0.856 0.881 0.881 X 0.867 RABE1b
1 0.77 0.763 0818 0.826 0.859 X 0.858 TKL
1 0.784 0.756 0.718 0.785 X 0.751 CLPC1
1 0.803 0.756 0.817 X 0.839 SHMT1
1 0.881 0.920 X 0.898 GOX1
1 0.942 X 0.900 ATPD
1 X 0.946 CSP41B
1 X PORB
1 CA1

Expression correlation matrix detailing the level of co-expression (expression correlation r-value) that the identified CNBP candidates share with each other. X

denotes that the shared r-value was below 0.7

is unclear under what circumstances their regulation is
important. Therefore a transcriptional co-expression,
gene ontology (GO) and stimulus-specific expression
analysis was performed, to better understand the func-
tions of the candidate CNBPs [87].

The transcriptional co-expression analysis was con-
ducted to determine the level of co-expression shared by
each of the candidate CNBPs and identify potential func-
tional relationships between their genes/proteins. It was
determined that expression of ten of the 12 candidate
CNBPs is highly correlated including the Calvin cycle
and photorespiratory genes and the less well functionally
characterized ATPD, RABElb, CLPC1 and CSP41B
(Table 3). The high level of co-expression of these four
genes with the Calvin cycle and photorespiratory genes
suggests that they may have functional roles in these
processes. The two candidate CNBPs that were not sig-
nificantly correlated included EIF4A and PORB.

A GO analysis of the ten expression correlated
CNBP candidates (from Table 3), using the TAIR data-
base, revealed that seven are annotated to function in
the defence response while eight have GO terms re-
lated to H,O, signaling (Table 4). Only RABE1b did
not have GO terms associated with either defence or
H,0,, however its co-expression with the other ex-
pression correlated CNBP candidates suggests that it
plays a role in these processes [23, 88]. This analysis
supports that the expression correlated CNBP candi-
dates function in H,O, signaling and the defence re-
sponse. These functions could be related as H,O,
signaling is critical to the defence response, particu-
larly the hypersensitive response (HR) during incom-
patible interactions with avirulent pathogens [89]. In
support of this, six of the expression correlated CNBP
candidates have GO annotations for both H,O,

signaling and the defence response while five have GO
terms for “incompatible interaction”; “plant-type HR”
or “regulation of plant-type HR”.

Finally, an in silico global expression analysis was per-
formed to identify conditions that induce differential ex-
pression of the ten expression correlated CNBP candidates.
Genevestigator was used to screen the publically available
microarray data and identify experiments of interest. The
expression correlated CNBP candidates were found to be
induced in response to light and repressed in response to
nitrate starvation, like other photorespiratory genes [85];
and repressed in plants infected with Pseudomonas (Fig. 4).
The stimulus-specific expression profile confirms that the
expression correlated CNBP candidates have similar ex-
pression profiles and supports that they play a role in
photorespiration and the defence response.

Glycolate oxidase activity is repressed by cGMP and nitric
oxide

Since a number of the expression correlated CNBP candi-
dates are modified by NO and annotated to function in
H,0, signalling and the defence response, it is conceivable
that CN binding and NO-mediated PTM could regulate
the activity of these proteins to modify H,O, signalling in
the plant response to pathogens. To test this hypothesis,
the activity of GOX1 was examined as it has been shown
to produce H,O, during the defence response [70].

The effect of cGMP and NO on GOX activity was mea-
sured during the plant response to pathogens. Plants in-
fected for 24 h with avirulent Pst DC3000 AvrRpmli, but
not virulent Pst DC3000, were found to have significantly
(p =0.0276) increased GOX activity (Fig. 5). When applied
alone, neither cGMP nor NO had any effect on Pst
DC3000 AvrRpmI-induced GOX activity. However, in
combination, ¢cGMP and NO significantly (p =0.0400)
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Table 4 Gene ontology biological process annotations of the expression correlated cyclic nucleotide binding protein candidates

Accession Description Defence response H,0, signaling
AT3G12780 phosphoglycerate kinase 1 defence response to bacterium, hydrogen peroxide
defence response, incompatible interaction catabolic process
AT1G42970 glyceraldehyde-3-phosphate defence response to bacterium hydrogen peroxide
dehydrogenase B subunit catabolic process
AT4G20360 RAB GTPase homolog E1B
AT3G60750 Transketolase hydrogen peroxide
catabolic process
AT5G50920 CLPC homologue 1 hydrogen peroxide
catabolic process
AT4G37930 serine transhydroxymethyl-transferase 1 defence response to bacterium, defence
response, incompatible interaction,
plant-type hypersensitive response,
salicylic acid biosynthetic process
AT3G14420 Glycolate oxidase 1 defence response to bacterium hydrogen peroxide
biosynthetic process
AT4G09650 ATP synthase delta-subunit defence response to bacterium, defence regulation of hydrogen
response to fungus, defence response, peroxide metabolic
incompatible interaction, detection of process
biotic stimulus, jasmonic acid mediated
signaling pathway, negative regulation of
defence response, regulation of plant-type
hypersensitive response, regulation of response
to biotic stimulus, response to chitin,
salicylic acid biosynthetic process,
systemic acquired resistance, salicylic acid
mediated signaling pathway
AT1G09340 chloroplast stem-loop binding defence response to bacterium, defence regulation of hydrogen
protein of 41 kDA response to fungus, defence response, peroxide metabolic
incompatible interaction, detection of process
biotic stimulus, jasmonic acid mediated
signaling pathway, negative regulation of
defence response, regulation of plant-type
hypersensitive response, regulation of
response to biotic stimulus, salicylic acid
biosynthetic process, systemic acquired resistance,
salicylic acid mediated signaling pathway
AT3G01500 carbonic anhydrase 1 defence response to bacterium, defence regulation of hydrogen

response to fungus, defence response to
fungus, incompatible interaction, defence

peroxide metabolic
process

response, incompatible interaction, detection

of biotic stimulus, jasmonic acid mediated
signaling pathway, negative regulation of
defence response, regulation of plant-type
hypersensitive response, regulation of response
to biotic stimulus, response to chitin, salicylic acid
biosynthetic process, systemic acquired resistance,
salicylic acid mediated signaling pathway

The GO biological process terms related to the plant defence response against pathogens and H,0, signaling were downloaded from TAIR for the ten expression

correlated CNBPs extracted from Table 3

repressed Pst DC3000 AvrRpmI-induced GOX activity to
basal levels. These results indicate that NO and ¢cGMP re-
press GOX activity, and thus H,O, production, during the
defence response which is consistent with regulation of
GOX1 through cGMP binding and NO-mediated PTM.

Discussion

In plants, cGMP and cAMP have been shown to play an
important role in physiological processes including sto-
matal closure and the defence response [10, 16]. While a

number of NCs have been identified in Arabidopsis and
demonstrated to synthesize CNs, little is known about
the cytosolic target proteins and thus the downstream
mechanisms of cGMP and cAMP signaling. Here, we
attempted to elucidate these mechanisms using an affin-
ity pull-down approach to identify CNBPs.

Experimental protocol validation
Twelve candidate CNBPs were identified from Arabi-
dopsis leaf and callus extracts using an affinity pull-
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Fig. 4 Gene expression profiling of the expression correlated cyclic nucleotide binding protein candidates. Heat map to show that the ten
expression correlated CNBP candidates (extracted from Table 3) are co-expressed and differentially expressed in the selected microarray experiments.
Experiments chosen were light vs. dark grown seven day old seedlings; seven day old seedlings that were shifted to nitrogen starved vs. replete media
for a further 48 h; Col-0 infected with 10° cfu cm ™2 virulent Psm ES4326 for 24 h vs. mock infected; Col-0 infected with 10% cfu cm ™ virulent Pst
DC3000 or 108 cfu cm ™2 Pst DC3000 hrpA mutant (lacks the type lll protein secretion system that delivers virulence effector proteins into host cells) for
7 h vs. mock infected. The scale bar shows the intensity of the log, transformed fold change values used to generate the heat map
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Fig. 5 Glycolate oxidase activity in plants inoculated with avirulent and virulent Pseudomonas. The leaves of four week old Col-0 plants were
pressure inoculated with either 10° cfu ml™" avirulent Pst DC3000 AvrRpm1 or virulent Pst DC3000 or 10 mM MgCl, (control). The effect of NO
and cGMP during infection was examined by including 50 uM 8-Br cGMP or 50 uM diethylamine NONOate either separately or in combination,
in the bacterial suspension at the time of infection. The infected leaves were harvested at 24 h post infection and GOX activity measured. Leaf
proteins were extracted and incubated with sodium glycolate, O-dianisidine and horseradish peroxidase. GOX activity catalyses the conversion
of the sodium glycolate substrate to glyoxylate, releasing H,0O,. The H,O, reacts with O-dianisidine in the presence of horseradish peroxidase
to produce the coloured O-dianisidine radical which can be quantified spectrophotometrically at 440 nm. GOX activity was found to be significantly
induced (p =0.0276) by AnvRom1 relative to the MgCl, control and this activity was significantly suppressed (p = 0.0400) by the combined treatment
with NO and cGMP. Error bars represent standard error of the mean (n = 6) and statistical significance was determined using a student’s t-test with the
asterisks denoting significant p values < 0.05
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down technique with synthetic cAMP and ¢cGMP baits
and CN-specific antibodies (Table 1). Candidate CNBPs
displayed high affinity binding but lacked specificity for
cAMP or cGMP baits. In animal studies similar observa-
tions have been made for the well-known CNBPs, PKA
and PKG [61, 90]. Indeed, cAMP and ¢cGMP bind each
other’s kinases and PDEs suggesting that extensive
cross-talk occurs between cAMP and cGMP signaling
pathways [91]. The majority of candidate CNBPs identi-
fied were isolated from leaf extracts. This could be at-
tributed to CN signaling being prevalent in leaf tissue
where CNs function in chloroplast development, stoma-
tal signaling and stress responses [9, 10, 17, 18]. In con-
trast, undifferentiated callus may lack functional
components of these processes.

There have been three previous attempts to identify
CNBPs in plants using synthetic CN baits however each
of these studies used only one CN bait and produced
limited information. One study failed to identify the
interacting proteins [92]. The other two studies identi-
fied nucleoside diphosphate kinases which were detected
in this study and in animal studies but were discarded as
low affinity binding proteins as they were displaced dur-
ing the sequential elution process [10, 93]. The only
other protein identified was GAPB which was also iden-
tified here [93].

Sequence analysis of candidate CNBPs

Sequence analysis revealed that none of the identified
Arabidopsis candidate CNBPs contain annotated
CNBDs. The majority of Arabidopsis proteins harbour-
ing CNBDs are membrane-associated channels and K*
transporters. These are unlikely to be present in our
experiments since the protein extraction buffer would
most likely isolate soluble proteins and not hydrophobic
membrane proteins. Consistent with this, animal mem-
brane associated CNBPs have proved difficult to purify
using CN baits [62]. The aim of this study however, was
to identify unknown downstream components of Arabi-
dopsis CN signaling pathways, such as CN-dependent
protein kinases and PDEs which are soluble proteins.
Additionally, since CNs are synthesised in the cytosol, it
is reasonable to assume that direct targets of CNs would
be found in the soluble protein fraction.

In contrast to the lack of annotated CNBDs, a number
of the candidate CNBPs are annotated to bind related
nucleotides such as ATP or GTP (Table 2). It is consid-
ered unlikely that these candidate CNBPs bind the CN
baits with low affinity because of their affinity for similar
nucleotides since they were not displaced during the se-
quential elution process. Furthermore all of the candi-
date CNBPs, except CA1, were immunoaffinity purified
with antibodies which are highly specific to cAMP and
c¢GMP. This is significant as it is possible that proteins
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bind the synthetic CNs due to excess CN concentrations.
However, in the immunoaffinity pull-downs no exogen-
ous CNs were added so the interaction was dependent
on the protein binding to endogenous CNs. In animals,
PKA and PKG bind ATP through their kinase domains
while EPACs bind GTP through guanine nucleotide ex-
change factor domains. Thus it is not unexpected that
CNBPs bind other nucleotides in addition to CNs.

Alignment of the candidate CNBPs with known
CNBDs, revealed that eight of the 12 candidate CNBPs
contain sequences that are similar to CNB or GAF do-
mains (Figs. 1 and 2). There is no detectable overlap be-
tween the abovementioned nucleotide binding sites and
the putative CNBDs, supporting that the candidate
CNBPs possess distinct CN and nucleotide binding sites
(Table 2). These CNB- and GAF-like sequences are not
annotated in the protein databases as search motifs
employed by these databases are conservative; whereas
the CNBD-like sequences identified here allow for single
mismatches, insertions or deletions or larger gap regions
between stretches of conserved amino acids. Importantly
similar CNBD-like sequences have been identified in
Dictyostelium c¢cGMP binding proteins (GbpA-D), and
these have been shown to bind CNs (Additional file 4)
[94, 95]. Another possibility is that plants have evolved
unique CNBDs that have yet to be annotated. The ex-
perimental design here allows for this possibility; how-
ever we could not identify any novel CNBDs from the
alignments.

Nitric oxide-mediated post translational modification

In animals, NO is intrinsically linked to cGMP signaling
since NO stimulates the soluble guanylyl cyclase (GC) to
produce cGMP [96]. It is plausible that a similar NO/
c¢GMP signaling pathway operates in plants since NO has
been shown to induce cGMP synthesis in plants [12, 15]
and a NO-responsive GC was recently identified in Arabi-
dopsis [26].

The finding that ten of the 12 candidate CNBPs are
modified by NO-induced PTMs, S-nitrosylation and Y-
nitration, (Table 2) was interesting as it presents a potential
mechanism for cross-talk between cGMP and NO signal-
ling pathways. This result is particularly significant when
considering that only 120 and 130 Arabidopsis proteins
have been demonstrated to be S-nitrosylated and Y-
nitrated, respectively under basal conditions and/or during
the HR [79-82]. It was not possible to detect either PTM
in our experiments; not surprisingly as these PTMs are in
low abundance and labile and thus typically studied using
the biotin-switch technique. Furthermore, S-nitrosylation
and Y-nitration may have been destroyed during the elec-
trophoresis and tryptic digest which included reducing
agents [80, 81]. Even using the biotin-switch technique,
PTM sites have been difficult to detect. Nevertheless for
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the candidate CNBPs, TKL and CA1l, the PTMs have been
mapped and in both cases the PTM site is contained within
the putative CNBD (Figs. 1 and 2). Conservation of these
cysteine and tyrosine residues across kingdoms is indicative
of functional importance (Additional files 4 and 5).

In agreement with our finding that the Arabidopsis can-
didate CNBPs are subject to NO-mediated PTM, NO has
been shown to modify animal CNBPs. There is evidence
that Y-nitration of PKA decreases affinity for cAMP bind-
ing, although the Y-nitration site remains unknown [97].
Similarly, Y-nitration of PKG at Y247, within the CNB do-
main, has been shown to decrease PKG activity [98]. This
site lies upstream of the Y-nitration site in TKL, however a
tyrosine at this position is conserved in HCNs and
CNGCs and in the candidate CNBP, SHMT1 that is also
subject to Y-nitration (Fig. 1; Additional file 4). Addition-
ally, there is evidence for S-nitrosylation of PDE5A at
C181, within the GAF domain, that reduces PDE activity
by interfering with ¢cGMP binding [99]. This site is not
conserved in other known GAF domains however there is
a similar site in GAPB, a CNBP candidate that is subject
to S-nitrosylation (Fig. 2; Additional file 5). Therefore, Y-
nitration of the CNB domain and S-nitrosylation of the
GAF domain may be a general mechanism of NO-
mediated regulation of CNBPs and cross-talk between
c¢cGMP and NO signaling pathways that is conserved
across plant and animal kingdoms.

Functions of the candidate CNBPs
Six of the identified Arabidopsis candidate CNBPs are
key enzymes in the Calvin cycle and photorespiration
pathway (Fig. 3). Transcriptional co-expression analysis
revealed that the Calvin cycle and photorespiratory
genes are significantly co-expressed with the less well
functionally characterized CNBPs, ATPD, RABEIb,
CLPC1 and CSP41B (Table 3). These lessor known genes
may play a role in these pathways since a number of
studies have shown that co-expressed genes often func-
tion together in common biological processes [100, 101].
Modulation of the activities of these enzymes, through
CN binding or NO-mediated PTM, may affect the bal-
ance between respiration and photorespiration which
would alter H,O, levels synthesized during photorespir-
ation [85]. In support of this, eight of the abovemen-
tioned ten expression correlated CNBP candidates are
annotated to function in HyO, signaling (Table 4). Previ-
ously it has been shown that the activity of GOX1, the
photorespiratory enzyme that produces H,O, (Fig. 3), is
modified by NO and this has been proposed to regulate
H,0, levels in response to abiotic stresses [102]. We
have shown that GOX1 binds CNs and contains a GAF-
like domain, suggesting that CNs could also affect the
activity of GOX1 to regulate H,O, levels.
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In plants ¢cGMP, NO and H,O, signaling pathways
have well established roles in two processes: stomatal
closure and the defence response, particularly the HR
during incompatible interactions with avirulent patho-
gens [2, 16, 103-105]. During ABA-mediated stomatal
closure, ABA-induced NO and H,O, stimulate ¢cGMP
synthesis which leads to increases in cytosolic Ca®",
likely through ¢cGMP activation of CNGCs [10]. Subse-
quently Joudoi and colleagues have shown that reactive
nitrogen species (produced when ROS react with NO)
react with ¢cGMP to produce 8-Nitro-cGMP and this
triggers the increase in cytosolic Ca®>* which then acts
on SLACI anion channels to induce stomatal closure
[105]. Two CNGCs, CNGC5 and CNGC6, are likely to
be responsible for these cGMP activated Ca** currents in
guard cells [38]. However, the fact that cnge5Scnge6 double
mutants are not impaired in ABA-induced stomatal closure
suggests that there are other factors involved, consistent
with the observation that cGMP is required but not suffi-
cient for ABA-induced stomatal closure [10]. We would
suggest that these other factors involved in ABA-induced
stomatal closure include the identified CNBP candidates.
For example, CA1 could be a downstream target of the
c¢cGMP/NO signaling pathway that operates during ABA-
induced stomatal closure since our results show that it
binds CNs and it has previously been shown to be S-
nitrosylated [83] and regulate stomatal closure through
HCOs5 effects on SLAC1 [106, 107].

Similarly, we propose that the expression correlated
CNBP candidates could be direct targets of the
pathogen-induced cGMP/NO signaling pathway. In sup-
port of this, the expression correlated CNBP candidates
are annotated to function in the defence response, spe-
cifically incompatible interactions and the HR (Table 4).
Additionally, their expression is repressed in response to
virulent bacterial pathogens, Psm and Pst DC3000, as
well as in response to the non-pathogenic Pst DC3000
hrpA mutant, supporting the annotated function in plant
defence and suggesting that plants down regulate the ex-
pression of these genes as part of pathogen associated
molecular pattern (PAMP) triggered immunity (Fig. 4).
Finally, mutant studies provide further evidence that
CAl, GOX1 and SHMT1 function in the defence re-
sponse. Specifically cal mutants are compromised in
their defence against avirulent Pst DC3000 avrB; goxl
mutants are compromised in their defence against viru-
lent Pst DC3000 and non-host P. syringae pv syringae
and P. syringae pv tabaci and shmtl mutants and com-
promised in their defence against virulent Pst DC3000
and avirulent Pst DC3000 AvrRpml [70, 83, 108]. The
compromised defence response phenotypes of these mu-
tants may be due to defects in their H,O, levels as gox1I
mutants produce less H,O, and shmtl mutants produce
more H,O, in response to stress.
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Here we showed that GOX activity is induced by
avirulent Pst DC3000 AvrRpml and this response is
inhibited by a combination of NO and cGMP treatment
(Fig. 5). It was somewhat surprising that neither NO nor
cGMP alone was able to inhibit GOX activity because
NO has been shown to induce cGMP synthesis in plants
[10, 12, 15]. This could suggest that there are NO-
mediated cGMP-independent pathways required for in-
hibition of GOX activity, for example NO-induced PTM
[104]. Similarly, there may be cGMP pathways that are
independent of upstream NO signalling that are required
for inhibition of GOX activity. For example, cGMP syn-
thesis via ligand-stimulated particulate GCs may be re-
quired for a full ¢cGMP response to avirulent Pst
DC3000 AvrRpm1 and in support of this a leucine rich
repeat containing Toll-like receptor has recently been
shown to contain an active GC domain [109]. Therefore,
NO-mediated cGMP-dependent and cGMP-independent
pathways as well as cGMP pathways that are independ-
ent of NO may be required for inhibition of GOX
activity.

The finding that Pst DC3000 AvrRpm1-induced GOX
activity was inhibited by NO and cGMP supports that
NO and cGMP signalling pathways can converge to
modify GOX1 activity, and thus H,O, production under
conditions that elicit a HR. There are conflicting reports
that place NO upstream and downstream of H,O, in the
plant response to pathogens [110] and there is evidence
that ¢cGMP stimulates H,O, production [111, 112] al-
though whether or not this happens in response to path-
ogens remains to be determined. We speculate that NO
and ¢cGMP inhibition of GOX activity is a negative feed-
back mechanism to turn off the H,O, signal and prevent
uncontrolled cell death during the HR. In support of
this, NO-mediated PTM has been shown to inhibit
NADPH oxidase activity [113] and stimulate ascorbate
peroxidase activity [114], the combined effect of which
would reduce H,O, levels and this has been suggested
to act as a negative feedback loop to limit the HR. This
does not exclude the possibility that NO and cGMP
stimulate H,O, production at earlier time points in the
response of Arabidopsis to avirulent Pst DC3000
AvrRpml.

While we do not know how NO and cGMP affect the
activity of the other CNBP candidates, we speculate that
NO and ¢cGMP can also modify their activities to fine-
tune H,O, signaling during the defence response.

Conclusions

In conclusion, the Calvin cycle (PKG, GAPB and TKL)
and photorespiratory enzymes (GOX1 and SHMT1) and
the associated CA1 contain CNBD-like sequences and are
modified by NO. Expression of these genes is correlated
and they have GO annotations that suggest they function
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in H,O, signaling the defence response. We have demon-
strated that cGMP and NO treatment can modify the ac-
tivity of at least one of the CNBP candidates, GOX1, that
produces H,O, in response to Pst DC3000 AvrRpml.
Therefore, the identified CNBP candidates have plausible
roles in plant CN-mediated processes and we propose that
they function together as points of cross-talk between CN,
NO and H,0O, signaling during the defence response.
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