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Abstract

Infections with the human pathogen Helicobacter pylori (H. pylori) are closely associated with the development of
inflammatory disorders and neoplastic transformation of the gastric epithelium. Drastic changes in the micromilieu
involve a complex network of H. pylori-requlated signal transduction pathways leading to the release of
proinflammatory cytokines, gut hormones and a wide range of signaling molecules. Besides controlling embryonic
development, the Hedgehog/GLI signaling pathway also plays important roles in epithelial proliferation,
differentiation, and regeneration of the gastric physiology, but also in the induction and progression of
inflammation and neoplastic transformation in H. pylori infections. Here, we summarize recent findings of H.
pylori-associated Hedgehog/GLI signaling in gastric homeostasis, malignant development and the modulation of

the gastric tumor microenvironment.
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Background

Although the incidence of gastric cancer steadily de-
clined in the last 20 years, stomach cancer is still the
second leading cause for cancer-related deaths world-
wide [1]. As the major causative agent for gastric cancer,
the human bacterial pathogen Helicobacter pylori (H.
pylori) has been identified, which is responsible for more
than 70% of gastric adenocarcinomas (non-cardia gastric
cancers) and also for other gastric disorders including
chronic gastritis, ulceration of the stomach and duode-
num, and lymphomas of the mucosa-associated lymph-
oid tissue (MALT) system [2, 3]. According to the strong
association between infections with H. pylori and neo-
plastic transformations in the human stomach, H. pylori
has been classified as a class-I carcinogen, representing
the strongest known risk factor for gastric cancer [4].
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Gastric cancer can be histologically differentiated
between diffuse or intestinal types and both are linked
to chronic H. pylori infections in humans. The patho-
genesis of the diffuse-type carcinoma is less well under-
stood, but has been frequently associated with the loss
of expression of the cell adhesion molecule and tumor
suppressor E-cadherin (CDHI1). Loss of E-cadherin
function is often the consequence of cdhl germline
mutations and could also be linked to sporadic muta-
tions or promoter hypermethylation. Tumor cells exhi-
biting CDH1 malfunction and subsequently loss of
intercellular adhesions tend to invade adjacent tissues
and are considered as more aggressive compared to
tumor cells of the intestinal type [5, 6]. Gastric cancer of
the intestinal type typically involves a series of sequential
processes, which are strongly linked to H. pylori infec-
tions. According to the Correa’s cascade, chronic active
inflammation in response to persistent H. pylori infec-
tion represents the initial phase in carcinogenesis
followed by chronic atrophic gastritis, intestinal metapla-
sia, dysplasia, and finally invasive carcinoma [6]. During
gastric carcinogenesis, genetic abnormalities accumulate
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and may involve mutations in the APC, TP53, and KRAS
genes, but also hypermethylation and microsatellites
were detected [7, 8].

Normally, H. pylori infection is acquired in childhood,
and persists for the patient’s lifetime if not treated with
antibiotics. Although infections with H. pylori are preva-
lent, only approximately 1-3% of the patients develop
gastric cancer [3]. The clinical outcome strongly depends
on the crosstalk between strain-specific bacterial virulence
factors, genetic predispositions of the host, alterations of
the stem cell niche, microbiota and environmental influ-
ences. In this context, implications of gene polymor-
phisms have been described including interleukins and
antagonistic receptors such as ILIB, IL10, ILIRN and
TNF-alpha [9, 10]. Environmental factors include smok-
ing, high salt consumption, processed meat or alcohol as
possible risk factors for gastric cancer (Fig. la). In
contrast, consumption of fresh fruits and vegetables has
been associated with reduced cancer risk. The major
bacterial determinant in the risk of developing gastric
cancer is represented by the cytotoxin-associated gene
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pathogenicity island (cagPAI). The cagPAl is a 40 kB DNA
insertion element consisting of 27-31 genes that encode
proteins important for the structure and function of a
highly-specialized type IV secretion system (T4SS) [11].
The TA4SS translocates the only known effector protein
cytotoxin-associated gene A (CagA) into the cytoplasm of
infected gastric epithelial and immune host cells where it
is tyrosine phosphorylated by non-receptor tyrosine
kinases of the Src and Abl kinase families [12—-14] and
derails cancer-associated signal transduction pathways
[15, 16]. In fact, infections with CagA-positive H. pylori
strains have been strongly correlated with the develop-
ment of severe inflammatory responses and subsequently
gastric cancer [17]. It has been suggested that in compari-
son to cagA-negative isolates, H. pylori strains expressing
CagA increase the risk of distal gastric adenocarcinoma
twofold [18]. Using in vivo animal models, CagA trans-
location has been suggested to play an important role in
the induction of gastric cancer [19, 20]. Transgenic mice
systemically expressing CagA underlined this observation
through the finding that CagA increased gastric epithelial
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Fig. 1 Model of the gastric physiology and cancer development. a Infection with H. pylori has been strongly associated with the development of
the diffuse type and the intestinal type of gastric cancer. The diffuse type is often accompanied by the loss of E-cadherin (CDH1) expression. The
development of the intestinal type of gastric cancer is associated with chronic gastritis, atrophy, and intestinal metaplasia as precursors of
dysplastic changes. Mutations, hypermethylation, and microsatellites, but also environmental factors are implicated in the carcinogenic
process. In this model, chronic active inflammation represents the initial phase in carcinogenesis via alterations of epithelial apoptosis, cell
proliferation, recruitment of BM-MSCs, dedifferentiation processes and induced invasive growth of neoplastic cells. b The gastric physiology is established
by the coordinated action of paracrine factors and hormones. The epithelium contains parietal cells, D cells, G cells and circulating enterochromaffin-like
(ECL) cells. The release of gastric acid by parietal cells is stimulated by ECL-secreted histamine and gastrin expressed by G cells. D cells produce the negative
regulator somatostatin, which blocks acid secretion via direct effects on parietal cells and through the inhibition of histamine and gastrin release
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cell proliferation rates and carcinomas [21]. Besides CagA,
the expression of additional factors was described as fur-
ther important bacterial determinant in the development
of gastric cancer, such as vacuolating cytotoxin A (VacA)
[22, 23], adhesion factors as blood group antigen-binding
adhesin (BabA) [24] and sialic acid-binding adhesin
(SabA) [25].

H. pylori induced gastric cancer and the tumor
microenvironment

The mechanism of how H. pylori can induce gastric
cancer is not well understood. H. pylori induces a pleth-
ora of different signal transduction processes that trigger
a complex multi-step process leading to inflammation
and carcinogenesis [26—29]. Normally, these pathways
critically control cellular responses such as proliferation,
apoptosis, epithelial dedifferentiation and motility, thereby
regulating tissue homeostasis (Fig. 1a). So far, most studies
of H. pylori induced cancer have focused on specific
cell types, although the interplay between different
cell types ranging from gastric epithelial cells, glands,
immune cells, to stem cells is crucially important for
the development and progression of H. pylori-associated
carcinogenesis [30—32].

H. pylori associated gastric cancer is characterized by a
chronic inflammatory phenotype, where the contribution
and interaction of bacterial virulence factors and the
host immune system account for oncogenic transform-
ation (for review see [30] and references therein). This
becomes evident at the molecular as well as cellular
level. For instance, H. pylori has been reported to
activate the key inflammatory regulator nuclear factor
kappa B (NF-kB), resulting in the activation and
enhancement of cytokine signaling including IL-8 and
TNF-alpha [33-38]. Further, IL11 mediated activation of
STAT3, an important regulator of inflammation and
driver of carcinogenesis, is a hallmark of about 50
percent of gastric cancers and has been shown to con-
tribute to tumor growth within an inflammatory setting
[39, 40]. At the cellular level, myeloid and lymphocytic
cells frequently infiltrate malignant lesions. Tumor-
associated macrophages (TAM) promote malignant
progression and the degree of TAM-infiltration induced
by a variety of chemoattractant factors correlates with
tumor progression and clinical disease stage [41-43].
Also, the number of immunosuppressive regulatory T-
cells (Tregs) is enhanced in tumor-draining lymph nodes
and peripheral blood of gastric cancer patients and the
number of Tregs inversely correlates with the survival of
patients [44—49]. Besides cells of the innate and adaptive
immune system, the tumor microenvironment is to a
large degree made up of cancer-associated fibroblasts
(CAF) that develop in response to the interplay of can-
cer cells with their stromal environment. CAF support

Page 3 of 13

cancer growth and progression by producing pro-
tumorigenic and -metastatic factors including pro-
angiogenic signals [50-53]. Thus, a detailed under-
standing of oncogenic signaling pathways within the
tumor and stromal compartments, particularly also in
inflammatory and immunosuppressive cell types is
needed to guide the design of novel combination
therapies that may involve strategies blocking both
immunosuppressive and pro-tumorigenic inflammatory
signals in the tumor microenvironment together with
targeted inhibition of oncogenic driver cues in gastric
cancer cells.

Gastric physiology and Hedgehog/GLI signaling in gastric
cancer

Dependent on the region in the human stomach, the
gastric epithelial lining forms foveolae consisting of
different types of cells and glands, including mucous,
endocrine, and undifferentiated cells (Fig. 1b), which
coordinate the complex gastric physiology by a
balanced micromilieu. Embedded within undifferenti-
ated epithelial cells, D cells, G cells and circulating
enterochromaffin-like (ECL) cells release regulatory
molecules controlling the production of gastric acid by
parietal cells [54, 55]. Histamine is released from ECL
cells, the hormone gastrin is released by G cells, and
the hormone somatostatin is secreted by D cells. In a
paracrine manner, histamine stimulates parietal cells to
produce gastric acid. Gastrin is involved in acid secre-
tion, stimulating histamine release from ECL cells. As a
negative regulator, somatostatin release is stimulated
when the pH in the stomach is too low. Then it blocks
acid secretion via direct effects on parietal cells, but
also through the inhibition of histamine and gastrin re-
lease [54, 55] (Fig. 1b). This sensitive balance of inter-
cellular communication can be crucially interrupted by
infections with H. pylori through manifold mechanisms
[56, 57]. As an additional important part of changes in
the gastric tumor microenvironment, H. pylori sti-
mulates a wide range of proinflammatory mediators
employing a highly complex network of a wide range of
diverse signaling pathways [16, 58, 59]. In fact, rela-
tively little is known about the detailed molecular
processes and signals operating during the early and
later stages of gastric cancer in response to H. pylori
infection and chronic inflammation. In recent years,
several oncogenic pathways including the wingless-type
MMTYV integration site family (Wnt)/beta catenin, NF-
kB and Hedgehog/GLI (HH/GLI) signaling pathway
have been implemented in the complex network of
diverse molecular mechanisms leading to gastric cancer
[60]. The implication of HH/GLI signaling in gastric
cancer has, therefore, opened the possibility of HH/GLI
targeting as a novel therapeutic approach.
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The HH/GLI pathway, first discovered in a mutagen-
esis screen for embryonic patterning mutants of the fruit
fly [61], is a crucial developmental regulatory signal that
has been highly conserved throughout various phyla.
During the past years, HH/GLI signaling has attracted
substantial interest by tumor biologist and oncologist
because of its widespread hyperactivation and oncogenic
activity in a variety of human malignancies. In fact, HH/
GLI signaling and its target genes control the major
hallmarks of cancer and cancer stem cells including
proliferation, survival, metastasis, angiogenesis and self-
renewal, making this signaling pathway a promising
target for therapies [62—-66].

The HH/GLI pathway is a highly complex signal trans-
duction process involving numerous regulatory factors
and control mechanisms located in different cellular com-
partments. In a nutshell, during the off-state canonical
HH/GLI signaling is actively repressed via the unliganded,
twelve-pass transmembrane HH receptor patched (PTCH)
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(Fig. 2a). PTCH prohibits the pathway activator Smooth-
ened (SMO), a G-protein coupled receptor-like protein,
from entering the primary cilium. In this repressed
state, the negative pathway regulator suppressor of
fused (SUFU) sequesters the first-line effector proteins,
glioblastoma-associated-protein 2 and 3 (GLI2, GLI3)
in the cytoplasm at the base of the primary cilium. The
formation of the SUFU-GLI protein complex allows the
sequential phosphorylation of the GLI proteins by pro-
tein kinase A (PKA), glycogen synthase kinase 3 beta
(GSK3pB) and casein kinase 1 (CK1) [67, 68]. Upon
phosphorylation, GLI2 and GLI3 are ubiquitinylated
and partially degraded by the proteasome located at
the base of the primary cilium [69]. While partial
degradation of GLI2 is rather inefficient, GLI3 is
known to abundantly form stable transcriptional re-
pressors upon proteolytic removal of the C-terminal
portion harboring the transactivation domain [70, 71].
Thus, proteolytic processing yields a GLI repressor
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Fig. 2 A simplified schematic depiction of the canonical hedgehog (HH) signal transduction pathway within the primary cilium. a During the
absence of the HH ligand the pathway is continuously repressed by PTCH and GPR161 located at the base of the primary cilium. In its

b Presence of HH ligand
Primary cilium
Poal
SMo* i o
t i H
i i -g
| e
' ' 5
< | =
o i
N ()serisy '
. [

e
®

HHIP e

Lysosome
GAS1,

BOC,
cbo

i
[
5 :

h
‘

Vesicle

0,

Target genes on

unliganded state the HH receptor PTCH prevents SMO, the crucial GLI activator, from entering the plasma membrane of the primary cilium and
thereby from executing its effector function (1). Furthermore, GPR161 increases cAMP levels, promoting the phosphorylation of the GLI
transcription factors, which are sequestered in a repressive complex with SUFU and IFT proteins at the base of the primary cilium, by PKA and
subsequently by GSK3 and CK1 (2). This phosphorylation leads to partial proteasomal degradation of GLI2 and GLI3 and repressor formation,
predominantly GLI3R (3). Thereupon, GLI3R enters the nucleus and represses target gene transcription (4). b The binding of the HH ligand to its
receptor PTCH is promoted by GAS1, BOC and CDO, whereas HHIP competes with PTCH for ligand binding (5). When HH binds to PTCH the
repression of the pathway is relieved by internalization and lysosomal degradation of the receptor-ligand-complex (6). This allows SMO to enter
the primary cilium (7) and to be activated by cholesterol, which triggers a conformational change (indicated by the schematic cholesterol struc-
ture in black and the asterisk (SMO¥)). GPR161 whereas is removed from the plasma membrane (8). When SMO* and the SUFU-GLI complex co-
localize at the tip of the primary cilium, upon the directed transport via IFT proteins along the microtubules, the GLI transcription factors are acti-
vated by SMO* and dissociate from the complex (9). The full-length activator forms of GLI2 and GLI3 enter the nucleus and drive target gene
transcription (10)
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form (GLIR) that prevents and shuts off HH target
gene expression (for more extensive reviews on HH/
GLI signaling see [72-78]).

The canonical HH/GLI pathway is activated via bind-
ing of the HH ligand to the receptor PTCH (Fig. 2b).
Ligand binding abrogates the repressive action of PTCH,
leading to the internalization of the receptor-ligand
complex and its subsequent degradation in lysosomes.
HH ligand binding is influenced by the presence of
distinct co-receptors: growth arrest specific 1 (GAS1),
cell adhesion molecule-related/down-regulated by onco-
genes (CDO) and brother of CDO (BOC) support the
binding of HH to PTCH, while hedgehog interacting
protein (HHIP) competes with PTCH for the HH ligand
[79-82]. The removal of PTCH triggers the entry of
SMO into and the exit of GPR161 from the primary
cilium. SMO is either shifted laterally within the plasma
membrane or enters the cilium from intracellular vesicles
[83]. There is evidence that the removal of GPR161 is suf-
ficient to prevent GLIR formation, most likely because of
a reduced PKA activity [84—86]. GLI activation, however,
is crucially dependent on the activation and the correct
localization of SMO. Although the specific signal, which
activates and represses SMO in response to HH, has not
yet been identified, recent work by the Rohatgi group has
shed light on the regulatory role of conformational
changes of SMO for signal transduction. These studies re-
vealed that cholesterol binding to the extracellular SMO
domains stabilizes a conformation that promotes respon-
siveness towards activating stimuli [87, 88].

When the pathway is activated the GLI-SUFU complex
is transported from the base to the tip of the primary
cilium. It has been shown that only upon the co-
localization of active SMO and GLIs at the tip of the
primary cilium, full-length GLI2 and GLI3 are released
from SUFU. The full-length GLIs then translocate
into the nucleus to activate target gene transcription
[69, 89, 90]. Upon GLI activation, positive as well as
negative feedback loops are elicited to balance the
strength and the duration of pathway activation. GLII
encodes a second-line but critical pathway amplifier that is
directly induced by GLI2 [91, 92]. GLI1 potently amplifies
HH/GLI signaling by activating and/or enhancing the
expression of a battery of HH target genes. Fine-tuning of
the response to GLI activity further depends on interactions
with co-factors, post-translational modifications including
phosphorylation and acetylation as well as on the diffe-
rential stability and degradation of the GLIs [93-98]. In
addition, different target genes display different sensi-
tivities towards GLI activator (GLIA) and GLIR levels
as a consequence of GLI binding site variations with
distinct affinities, adding another regulatory layer for
the precise determination of the response to the so-
called GLI-code [99-102].
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Further, there is a steadily increasing list of mechanisms
accounting for SMO-independent regulation of GLI
activity and expression. Of note, these non-canonical HH/
GLI signals have been repeatedly reported in cancer cells,
integrating the HH/GLI pathway in the complex web of
oncogenic signals but also accounting for resistance to
clinical inhibitors targeting SMO, which has become a
major challenge for the use of Hedgehog pathway inhibi-
tors in oncology [103—110] (for comprehensive reviews
see [102, 111, 112]).

HH/GLI targeting as therapeutic option in gastric cancer -
challenges and considerations

Despite substantial efforts of biotech and pharmaceutical
companies to develop efficient HH pathway inhibitors,
the clinical success of anti-HH therapies has mainly
been limited to non-melanoma skin and brain cancers,
while other clinical trials using HH/GLI inhibitors for
the treatment of solid cancers with high medical need
yielded largely disappointing results [113-118]. Al-
though these failed trials were based on sound pre-
clinical evidence supporting a key role of HH/GLI
signaling in malignant progression of various cancer
entities [119-123], the unforeseeable complexity of
HH/GLI signal regulation within the tumor and its
microenvironment as well as the frequent develop-
ment of a priori and/or acquired drug resistance have
recently challenged the concept of HH/GLI targeting
in oncology [124, 125]. We outline two examples —
HH/GLI signaling in pancreatic and colorectal cancer
- to emphasize the strict need for a very careful and
comprehensive analysis of the oncogenicity of the
HH/GLI pathway within the complex interplay of
cancer cells with their microenvironment and the im-
mune system, in order to develop multi-modal thera-
peutic protocols that may be successful in the future
treatment of gastric cancer.

First evidence based on in vitro and xenograft models
suggested a crucial tumor-cell autonomous role of
canonical HH/GLI signaling in pancreatic cancer
[119, 126]. However, this concept has recently been
challenged by findings showing in vivo activation of HH/
GLI signaling in the stromal rather than tumor cell com-
partment. Strikingly, inhibition of HH/GLI signaling in
the tumor stroma of pancreatic cancer led to enhanced
tumor growth rather than a therapeutic effect, reflecting
the discouraging outcome of anti-HH trials in pancreatic
cancer patients [127-129]. By contrast, non-canonical ac-
tivation of the GLI transcription factors mediating HH/
GLI signaling in the nucleus of pancreatic cancer cells is
essential for tumor initiation and disease progression [130,
131]. This suggested that direct targeting of oncogenic
GLI proteins - while also maintaining the protective effect
of the stromal compartment - may prove a successful
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therapeutic strategy within a multi-modal combination
treatment protocol.

Similarly, the initial enthusiasm about HH targeting
for the treatment of colorectal cancer faded rapidly,
when clinical trials with HH antagonists did not show
any significant therapeutic benefit. This may to some
extent be due to the fact that most preclinical models
used for studying the oncogenic effect of HH/GLI
signaling did not take into account the cellular and
molecular complexity of the tumor microenvironment
and the vivid cross-talk between tumor cells, the tumor
stroma and the immune system. Like in pancreatic
cancer, it has recently been shown that canonical HH/
GLI signaling in colon cancer is strongly activated in the
stromal rather than the tumor cell compartment provid-
ing a cancer-protective activity. Intriguingly, HH/GLI
signaling in the stromal compartment of mouse colon
cancer models reduces tumor development by modifying
BMP signaling in colon cancer cells and by dampening
inflammatory signaling in colitis-associated cancer models
[132, 133]. Given the distinct functions of HH/GLI signal-
ing within the heterogeneous cellular context of the tumor
and its microenvironment, a precise understanding of
HH/GLI signaling in the context of gastric cancer is
mandatory for the future evaluation of the therapeutic
potential of HH/GLI targeting.

Hedgehog signaling as a crucial mediator in gastric
physiology and disease

The role of the HH/GLI signaling pathway in gastric
homeostasis has been established in several recent stud-
ies (for reviews see [134—136]). The expression of the
hedgehog family member sonic hedgehog (SHH) is re-
quired to shape the mucosal layer but has to be tightly
controlled during the development of the gastric glandu-
lar epithelium [135, 137]. Furthermore, SHH expression
appears to be crucial for gastric tissue repair [138] and
for the maintenance of the functional morphology and
the regulation of secretory functions of gastric glands in
adult mice [134]. There is evidence that SHH production
and reception by parietal cells is required to maintain
the acid and gastrin secretion in the stomach at physio-
logical levels. Furthermore, the SHH concentration
gradient established by the parietal cells, located in
the central region of the gland seems to support the
differentiation of mucous neck to zymogenic cells. At
the same time, high concentrations of the secreted
SHH ligand seem to restrict the proliferation of sur-
face pit cells [139, 140].

As SHH plays a crucially important role in cellular
differentiation and gastric tissue homeostasis [141], epi-
thelial cell differentiation in H. pylori-associated gastritis
in the Mongolian gerbil model has been investigated.
Persistent infection with H. pylori induced inflammation
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of the antrum and corpus of the stomach, which was
accompanied by a clear loss of SHH expression in par-
ietal cells and mucous neck cells of the gastric fundic
glands as monitored by quantitative real-time (RT)-PCR,
in situ hybridization, immunoblotting and immunobhisto-
chemistry. This phenotype was associated with the loss
of parietal cells and disturbed fundic gland cell differen-
tiation [142] (Fig. 3a). A similar observation was made in
human patients underlining a correlation between H.
pylori infections and the HH signaling components
SHH, SMO and GLI2 [143]. In comparison to healthy
mucosa, expression of the intestine-specific transcription
factor caudal type homeobox 2 (CDX2) negatively corre-
lated with SHH expression in the corpus lesser curve of
gastric cancer patients indicating that H. pylori might
employ SHH expression in gastric atrophy and intestinal
metaplasia during the development and/or progression
of gastric carcinogenesis [144] (Fig. 3a). CDX2 exhibits
an important role in the development and maintenance
of the intestinal epithelium, but is frequently found in
gastric cancer with controversially discussed functions.
The expression of CDX2 in transgenic mouse models
transformed the gastric mucosa into intestinal metaplas-
tic mucosa and triggered gastric cancer [145, 146], but
in other studies CDX2 expression correlated with a
better prognosis [147, 148]. Interestingly, H. pylori
eradication led to an increase in SHH expression in
Mongolian gerbils [149] and in the human corpus,
where it mediated a decrease in CDX2 expression in the
corpus lesser curve [150—152]. Although eradication of
H. pylori mediated an increase in SHH expression and
its downstream regulators, the beneficial effect was not
observed in patients with high risk of gastric cancer
[153]. Therefore, it was proposed that prevention of
cancer might be improved through H. pylori eradication
prior to the development of atrophic gastritis with
intestinal metaplasia [153]. These observations also point
to a functional role of SHH re-expression in the gastric
epithelial regeneration. Notably, mice with a parietal
cell-specific deletion of Shh (PC-ShH*®) showed a
delayed wound healing [154], suggesting that SHH re-
expression after H. pylori eradication contributes to
epithelial regeneration.

H. pylori can directly control SHH expression

The loss of parietal cells associated with the loss of SHH
expression during H. pylori-mediated atrophy suggests
an indirect regulatory effect of H. pylori on HH activity.
However, H. pylori may exert strategies directly targeting
SHH expression. A comprehensive profiling of DNA
methylation of a well-characterized series of primary
gastric cancers was performed and 147 genes were
identified exhibiting significantly changed methylation
patterns in tumor and matched tumor-adjacent gastric
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tissue. Among these genes, hoxAS5 and hedgehog signal-
ing molecules (WNT2, WNT5A, SMO, HHIP, GLI3,
BMP6) were found [155], suggesting that the loss of
hedgehog signaling proteins is also the consequence of
epigenetic processes (Fig. 3a). However, the reciprocal
expression of SHH and CDX2 in intestinal metaplasia
could not be explained by methylation [156]. SHH was
drastically down-regulated in a CDX2 transgenic mouse
model, which was not mediated by SHH promoter
hypermethylation. In fact, the authors observed that
CDX2 directly binds the TATA box in the SHH pro-
moter leading to a down-regulation of the SHH expres-
sion, suggesting a direct connection between SHH and
CDX2 expression. These observations were confirmed in
cultured AGS, MKN45, and MKN74 cells transfected
with CDX2-expressing plasmids, in which SHH expres-
sion was clearly decreased [156]. Although a cell-type-
specific induction of CDX2 expression has been shown

in H. pylori-infected gastric epithelial cell lines [157, 158],
this observation has not yet been correlated with SHH
gene regulation.

In insulin-gastrin (InsGas) mice that overexpress
pancreatic gastrin to study gastric cancer, SHH, GLII,
but not GLI3 expression in pre-metaplastic lesions of
non-infected mice was considerably reduced compared
to normal adjacent glands, but partially re-expressed in
H. felis-induced gastric metaplasia. It was suggested that
H. felis-activated NF-kB and subsequently IL-8 secretion
may be involved in this pathway [159] (Fig. 3a). This
indicates that H. felis could regulate SHH signaling
through the loss of SHH expressing cell types. Similar
effects were found in transgenic GLI1-deficient mice
infected with H. felis, which were largely resistant to the
development of gastric metaplasia and infiltration by
inflammatory cells [160]. GLI1 deletion blocked Th1 and
Th2 cytokines, but not a Thl7 response. As a target
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gene of GLI1, schlafen-4 was identified in microarray
analyses (Fig. 3a), which was induced in wildtype mice,
but not in the Glil-deficient mice [160]. In addition,
SHH has been shown to positively regulate cytokine ex-
pression during H. pylori infection [161]. Comparing
WT and PC-Shi*° mice, an increase of II-12, II-1B, II-
10, Ifny and Mip-2 expression was only observed in
wildtype mice infected with H. pylori [161] (Fig. 3a).

Although it was previously hypothesized that loss of
SHH expression is mainly caused by the loss of parietal
cells, it was further shown that downregulation of SHH
expression is associated with parietal cell dysfunction re-
vealing an important role in gastric acid secretion [162]
(Fig. 3a). This might be supported by the finding that
the H. pylori-induced proinflammatory cytokine IL-1p
inhibited gastric acid production, intracellular calcium
release, and SHH expression in parietal cells via IL-1
receptor signaling leading to gastric atrophy [163]
(Fig. 3a). These data underline the importance of the
acidic environment in maintaining SHH expression and
secretion in the human stomach.

The interference of SHH and gastric acid became
more complex when another report indicated that SHH
can increase acid secretion by gastric parietal cells
through an increase of H*/K*-ATPase gene expression
[164] (Fig. 3a). Phenotypically, transgenic mice that
express the hedgehog inhibitor Hhipl secreted less gas-
tric acid resulting in hypochlorhydria. In these mice,
somatostatin was decreased, gastrin gene expression was
enhanced and Skhh mRNA was down-regulated. Shh gene
expression could be activated through an increase of
intracellular calcium, which then activates calcium-
specific protein kinase C alpha and beta (PKC-a, PKC-f)
(Fig. 3a). Therefore, SHH could function as a ligand that
transduces alterations of gastric acidity to the secretion
of gastrin by G cells [140].

Overexpression of SHH in human gastric cancers has
also been reported [165-167]. In agreement to this, Shh
expression can be induced in H. pylori-colonized mice in
an acid-independent manner [168, 169]. In these mice,
H. pylori induced infiltration of CD4+ T cells and
increased levels of IFNy and II-1p in the stomach after
six months of infection [169]. Intriguingly, PC-Shh*®
mice did not develop gastritis in response to H. pylori
and did not display elevated CD4+ T cells. Macrophages
are crucially important in the development of gastritis
[42]. In PC-ShK"® mice, macrophages were not recruited
to the position where ulceration was induced [154].
Interestingly, H. pylori-increased SHH mainly occurred
in parietal cells of the fundic mucosa and can function
as a chemoattractant for macrophages as shown in bone
marrow chimera experiments [169] (Fig. 3b). Accord-
ingly, an organoid culture system for the fundic region
of the mouse stomach that contained SHH-expressing
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parietal cells was established to investigate H. pylori-
mediated SHH signaling. H. pylori activated NF-«kB,
which induced SHH expression in a CagA-dependent
manner. Consequently, pharmacological inhibition of
NF-xB blocked SHH upregulation [168]. From these
data, the authors concluded that SHH acts as a regu-
lator of the initial immune response. Underlining this
assumption, CagA-positive H. pylori strains were re-
ported to activate SHH expression in the cultured
gastric epithelial cell lines AGS, MKN-28, MKN-45
and Kato III cells. Besides SHH, PTCH and GLI were
upregulated as well. The authors suggested that H.
pylori induced NF-«B activity in a CagA-dependent
manner to activate SHH expression [170]. However,
how CagA is implicated in NF-kB-associated SHH
regulation needs to be investigated in more detail,
since it is well established that CagA is not directly
involved in early H. pylori-mediated NF-«B activation
[33, 34]. Functionally, expression of SHH in cell
culture experiments led to a higher resistance to
apoptosis upon infection with H. pylori [171], which
could explain the hyperproliferative phenotype in re-
sponse to H. pylori infections.

HH/GLI signaling in the recruitment of bone-marrow
derived mesenchymal stem cells (BM-MSCs) to inflamed
tissues in response to H. pylori
SHH appears to be not only a potential chemoattractant
for macrophages, but also for BM-MSCs in chronic
inflammation [169, 172]. During chronic infection with
H. pylori, BM-MSCs are recruited to the site of chronic
inflammation to repopulate the gastric epithelium and
promote gastric cancer progression [173]. Hence, inves-
tigations were performed to elucidate the role of SHH in
the regulation of BM-MSCs in the stomach [174]. It was
found that IFNy-induced mesenchymal stem cell (MSC)
proliferation required SHH secretion via an autocrine
regulatory mechanism. Only MSCs that expressed SHH
were finally recruited to the gastric mucosa in response
to IFNy [174] (Fig. 3b). Whether H. pylori activated T-
lymphocytes produce IFNy to trigger MSCs in the bone
marrow to secrete elevated levels of SHH needs to be
investigated in future experiments.

Gastritis can result in MSC proliferation as well. Using
a gastrin-deficient mouse model exhibiting a hypochlor-
hydric phenotype leading to inflammation, parietal cell
atrophy and metaplasia, BM-MSCs showed aberrant
proliferation and activation of HH/GLI signaling in
response to chronic gastric inflammation [175]. Parabi-
osis experiments demonstrated that circulating signals
(e.g. TGEP) released during H. pylori-mediated gastritis
induced HH/GLI signaling within bone marrow-derived
stromal cells and the rapid recruitment of MSCs to the
inflamed stomach [175] (Fig. 3b).
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The implication of hedgehog signaling in MSC recruit-
ment is interesting and led to the question about the
functional consequences of the recruitment of MSCs to
inflamed tissue: tissue regeneration and/or gastric
cancer? The finding that H. pylori can recruit MSCs that
repopulate the epithelium and then transdifferentiate
into intraepithelial cancer cells prompted the hypothesis
that gastric epithelial cancer can originate from bone
marrow-derived cells [173].

Conclusions

H. pylori infections are a paradigm for inflammation-
driven cancer. A vast number of reports exist describing
the pathophysiological mechanisms, though our knowledge
of H. pylori-modulated hedgehog signaling in gastric
homeostasis and malignant disease is still scarce. At a first
glance, the influence of H. pylori on SHH expression and
function appears controversial. However, upon a closer
view on the complex processes it becomes apparently clear
that a precise regulation of SHH is a crucial part of gastric
physiology. Future studies are necessary to elucidate how
gastric HH/GLI signaling is implicated in H. pylori-induced
pathogenesis as pharmacological targeting of HH/GLI ele-
ments represents an attractive approach for the establish-
ment of novel strategies for the treatment of gastric cancer.
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