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Abstract

Casein kinase 1α (CK1α) is a multifunctional protein belonging to the CK1 protein family that is conserved in
eukaryotes from yeast to humans. It regulates signaling pathways related to membrane trafficking, cell cycle
progression, chromosome segregation, apoptosis, autophagy, cell metabolism, and differentiation in development,
circadian rhythm, and the immune response as well as neurodegeneration and cancer. Given its involvement in diverse
cellular, physiological, and pathological processes, CK1α is a promising therapeutic target. In this review, we summarize
what is known of the biological functions of CK1α, and provide an overview of existing challenges and potential
opportunities for advancing theranostics.
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Background
Casein kinase 1α (CK1α) (encoded by CSNK1A1 in
humans) is a member of the CK1 family of proteins that
has broad serine/threonine protein kinase activity [1–4]
(Fig. 1a) and is one of the main components of the Wnt/
β-catenin signaling pathway. CK1α phosphorylates
β-catenin at Ser45 as part of the β-catenin destruction com-
plex for subsequent β-transducin repeat-containing E3 ubi-
quitin protein ligase (β-TrCP)-mediated ubiquitination and
proteasomal degradation [5, 6]. Recent studies have shown
that CK1α targets p53 for degradation—which is mediated
by murine double minute clone 2 (MDM2) and MDM4
(also known as MDMX) [7–10]—while stabilizing and
thereby positively regulating E2F-1, a transcription factor
involved in cell cycle progression [7]. Additionally, CK1α
was shown to exert dual gating functions by first pro-
moting and then terminating T cell receptor (TCR)-in-
duced nuclear factor κB (NF-κB) activation [11].
Lenalidomide (a thalidomide analog) is a highly effect-
ive treatment for myelodysplastic syndrome with

deletion of chromosome 5q [MDS del(5q)] that exerts
its effects by inducing CK1α ubiquitination and degrad-
ation [12, 13]. These findings suggest that CSNK1A1 is
a conditionally essential malignancy gene and a poten-
tial target for anti-cancer drugs.

Overview of CK1α
CSNK1A1 is located on chromosome 5q32 and is
expressed as four alternatively spliced transcript variants,
yielding four protein isoforms of varying length that
mainly differ by the presence or absence of a 28-amino
acid “L” insert in the kinase domain and a 12-amino acid
“S” insert near the C terminus. The former is unique to
vertebrates [14] and contains the sequence of
PVGKRKR, which has the characteristics of a nuclear
localization signal (NLS) and may target CK1α to the
nucleus [15] (Fig. 1b). Isoform 2, which comprises 337
amino acids, is the predominant isoform [11, 13] with a
kinase domain located between Ile12 and Ala282 [11].
The 2.45-Å crystal structure revealed that the first 93
amino acids form a β-hairpin loop and (especially resi-
dues 35–41) binds cullin 4/really interesting new
gene-box 1/DNA damage-binding protein 1/cereblon
(CRBN) (also known as CRL4CRBN) E3 ubiquitin ligase
for CK1α ubiquitination and degradation [12, 13]. The
C-lobe of CK1α is mainly composed of αC helices and
contributes to the kinase function (Fig. 1c). CK1α
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phosphorylates the serine/threonine residue in the
canonical motif of pS/T-X(n = 2-4)-pS/T or noncanonical
motif of pS/T-X-pS/T (where pS/T is phospho-serine/
threonine and X is any amino acid) [16, 17]. The basic
residues (K229KQK232) of CK1α are implicated in canon-
ical substrate recognition [17], but the noncanonical
substrate with pS/T-X-pS/T motif such as β-catenin is
not significantly affected by mutations in the
K229KQK232 stretch [17, 18].
CK1α is widely expressed in various organelles includ-

ing the cell membrane and nucleus [15]. It also localizes
to the centrosome, microtubules, the Golgi apparatus,
and endoplasmic reticulum in non-neuronal interphase
cells [19, 20]; in synaptic vesicles in neurons [20];

spindle microtubules at mitosis [21]; and to nuclear
structures (e.g., nuclear speckles) [22]. CK1α is ubiqui-
tously expressed and is constitutively active [23, 24],
implying that it has many biological functions besides its
role in β-catenin degradation that span diverse research
areas (Fig. 1d).

Physiological and pathological expression of CK1α in
humans
CK1α mRNA is expressed in all tissues in humans under
physiological conditions; the levels are high in esophagus
and skin, but low in pancreas and liver (Fig. 2a). The pro-
tein is highly expressed in adrenal gland, bronchus, testis,
placenta, and endometrium but is not detected in smooth

Fig. 1 Schematic representation of CK1α. a CK1 family and CK1 superfamily. b Four isoforms of CK1α and their functional domains. c Cartoon
representation of DNA damage-binding protein (DDB)1ΔBPB-CRBN-lenalidomide-CK1α. Top left, DDB1, CRBN, and CK1α domain color coding and
boundaries. Bottom right, enlarged view of the CRBN-lenalidomide-CK1α interface (data were obtained from protein data bank: www.rcsb.org,
PDB-ID: 5FQD; and were first published in reference [13]). d Investigations on CK1α in diverse research fields
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Fig. 2 CK1α expression in normal human tissues and the most common human cancer tissues. a RNA sequencing data for CK1α expressed in normal
human tissues are reported as median reads per kilobase per million mapped reads (RPKM). The data were generated by the Genotype-Tissue Expression
project (www.gtexportal.org) and were first published in references [238, 239] and deposited in the HPA (www.proteinatlas.org). b Protein expression data
from HPA (www.proteinatlas.org), first published in reference [240]. c RNA sequencing data of CK1α levels in 17 cancer types are reported as median
number of fragments per kilobase of exon per million reads (FPKM), generated by The Cancer Genome Atlas (TCGA) (https://cancergenome.nih.gov/); data
were first published in reference [241], and were deposited in the HPA (www.proteinatlas.org). d, e Microarray data of CK1α expression in normal and
cancer tissues in humans were obtained from Oncomine (www.oncomine.org) (reference [242]). Differences in expression levels were evaluated with the
Student’s t test using Oncomine software. d Upregulation of CK1α mRNA levels in human cancer tissues relative to matched normal tissues. a, Pancreas, b,
pancreatic carcinoma (left, reference [243] and right, reference [244]); c, brain; d, anaplastic astrocytoma; e, oligodendroglioma; f, glioblastoma (reference
[245]). e Downregulation of CK1αmRNA levels in human cancer tissues relative to matched normal tissues. g, CD4-positive (n= 5) + CD8-positive (n= 5) +
normal T lymphocytes (n= 10); h, angioimmunoblastic T-cell lymphoma; i, anaplastic large cell lymphoma (reference [246]); j, esophagus; k, esophageal
squamous cell carcinoma; l, esophageal adenocarcinoma (left, reference [247]; right, reference [248]); m, colon (n = 19) + rectum (n = 3); n,
rectal adenocarcinoma; o, colon adenocarcinoma (data obtained from TCGA and deposited in Oncomine); p, bladder mucosa; q, infiltrating
bladder urothelial carcinoma (reference [249]); r, buccal mucosa; s, head and neck squamous cell carcinoma (reference [250])
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muscle, liver, seminal vesicle, or ovary (Fig. 2b). CK1α
mRNA is expressed in most cancer tissues (Fig. 2c), and
highly expressed in pancreatic cancer but is detected at low
levels in colorectal cancer as compared to matched normal
tissues with GeneChip arrays (Fig. 2d, e). Interestingly, low
CK1α expression was associated with poorer overall
survival (OS) in colorectal cancer patients (Fig. 3a–c), espe-
cially in colon adenocarcinoma (Fig. 3d–i). On the other
hand, high CK1α levels in pancreatic cancer were linked to
poorer OS (Fig. 3j–l), providing evidence that CK1α is a
conditionally essential malignancy protein. CK1α mRNA
was also found to be expressed in various cancer cell lines
(Fig. 4a) and was localized to the cytosol (Fig. 4b), suggest-
ing that it mainly functions in the cytoplasm.

CK1α in Wnt/β-catenin and hedgehog signaling
Wnt/β-catenin (also known as canonical Wnt) signaling
regulates various physiological processes including

embryonic development, adult stem cell maintenance,
and genomic stability [25]. Mutations in Wnt pathway
components such as adenomatous polyposis coli (APC)
result in pathological disturbances, especially in colorec-
tal cancer [26]. β-catenin is a key component of this
pathway that binds to the cytoplasmic tail of E-cadherin
at the cell membrane to promote cell-cell adhesion [27],
and also localizes to the cytoplasm where it forms the
destruction complex along with CK1α, glycogen syn-
thase kinase 3β (GSK-3β), APC, Axin, and Wilms tumor
gene on X chromosome (WTX, also known as APC
membrane recruitment protein 1) to promote the
ubiquitination and proteasomal degradation of β-catenin
in the absence of extracellular Wnt ligands [28].
β-Catenin is translocated to the nucleus upon activation
of Wnt signaling via Rac1 [29], where it forms a
complex with T cell factor and co-activators such as
cyclic (c)AMP response element-binding protein

Fig. 3 Prognostic value of CK1α mRNA level in human colorectal and pancreatic cancers. Data were obtained from The Cancer Genome Atlas
and deposited in the HPA (www.proteinatlas.org). P values were estimated with the Kaplan-Meier method. a, b, d, e, g, h, j, k Kaplan-Meier survival analysis
of colorectal cancer, colon adenocarcinoma, rectal adenocarcinoma, and pancreatic cancer by best (left) and median (right) separation according to CK1α
mRNA expression level. c, f, i, l Interactive survival plot (individual patient data)
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(CREB)-binding protein and BRM/SWI2-related gene 1
(Brg-1) to activate Wnt target genes [30].
β-Catenin is phosphorylated by CK1α at Ser45, which

leads to GSK-3β-dependent phosphorylation at Ser33/37
and Thr41 and subsequent degradation [5]. APC is also
phosphorylated at Ser1504/1505/1507 and S1510 (in the
R3 region) by CK1α and other CK1 proteins [31], which
is essential for β-catenin binding. Thus, CK1α acts as a
negative regulator of Wnt signaling [32].
The cytoplasmic domain of E-cadherin is phosphor-

ylated by CK1α at Ser846, which attenuates its inter-
action with while promoting the release of β-catenin
from the cell membrane [33]. Low-density lipoprotein
receptor-related protein 6 (LRP6) is a single-pass
transmembrane receptor that cooperates with Frizzled
proteins for Wnt ligand binding and can be phos-
phorylated by CK1α and CK1δ at Thr1493, which
activates and promotes recruitment of Axin to the
membrane in response to the Wnt signal, leading to
Wnt pathway activation [34]. The plant homeodomain
zinc finger protein Jade-1 functions as an E3 ubiqui-
tin ligase that ubiquitinates both phosphorylated and
non-phosphorylated forms of β-catenin [35] and is a
substrate of CK1α; it is phosphorylated at Ser18 and
Ser20, which reduces its ability to inhibit Wnt/β-ca-
tenin signaling [36, 37]. Thus, CK1α can act as a
positive regulator of Wnt/β-catenin signaling (Fig. 5a
and Table 1).
The development of the Cre-LoxP system has enabled

detailed investigations of the opposing functions of
CK1α in Wnt signaling. For example, gut-specific knock-
out of CK1α using the Villin 1 promoter resulted in Wnt
hyperactivation due to decreased phosphorylation of

β-catenin at Ser45, Ser33/37, and Thr41 and an incre-
ment in total β-catenin levels. Accordingly, target genes
of Wnt signaling such as cyclin D1, c-myc, and CD44
were induced at both the mRNA and protein levels in
CK1α knockout mice [10]. Reporter-based screens of
haploid human cells revealed that CK1α and APC
were the rate-limiting negative regulators of Wnt
signaling [38].
Hedgehog signaling is aberrantly activated in basal cell

carcinomas, the most common cancer in humans [39]
and in medulloblastoma, the most common pediatric
brain malignancy [40]. Gli transcription factors are key
mediators of Hedgehog signaling and are phosphorylated
by CK1α, GSK-3β, and protein kinase A (PKA), which
promote the proteolysis of the active form of Gli1/2 and
induction of a repressive form of Gli3 receptor [41]. In
Drosophila, CK1α suppresses Hedgehog signaling in the
absence of a ligand [42, 43] and is also required for
Smoothened (Smo) phosphorylation upon pathway acti-
vation [44–48]. However, Smo in mammals lacks CK1α
phosphorylation sites [47].
Hedgehog signaling shares many components with the

Wnt/β-catenin pathway, including CK1α, GSK-3β, and
β-TrCP [49, 50]. Pyrvinium, a CK1α agonist that is known
to block Wnt signaling [51], suppresses Hedgehog signal-
ing by attenuating Gli activity [52]. Thus, CK1α functions
as a negative regulator of Hedgehog signaling in mammals
(Fig. 5b).

CK1α in the regulation of autophagy
Autophagy plays an important role in the maintenance
of organismal homeostasis through regulation of cellular
protein and organelle turnover, with their subsequent

Fig. 4 CK1α mRNA and protein expression in common cell lines. a RNA sequencing data for CK1α from the HPA (www.proteinatlas.org) are reported
as number of transcripts per kilobase million. b Subcellular localization of CK1α in Caco-2, PC-3, and U-2 OS cell lines. Data were obtained from the
HPA (www.proteinatlas.org) and were first published in reference [251]
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degradation by lysosomes providing macromolecular
precursors and energy to cells [53]. Aberrant autophagy
leads to various diseases such as cancer and neurodegen-
eration [54]. Autophagy is an evolutionarily conserved
catabolic process that has five distinct stages: initiation,
vesicle nucleation, vesicle elongation, vesicle fusion, and
cargo degradation [54]. It is induced by nutrient defi-
ciency, oxidative stress, and infection, among other
factors. Vesicle nucleation is induced by an activated
Unc-51-like autophagy activating kinase 1 (ULK1) com-
plex, which consists of ULK1/2 (ortholog of yeast
autophagy-related 1 [Atg1]), focal adhesion kinase family
interacting protein of 200 kDa (ortholog of yeast Atg17)
[55], Atg13, and Atg101 [56, 57], which is released from
mammalian target of rapamycin (mTOR) inhibition [58].
Beclin-1 is then phosphorylated by ULK1 and serves as
a scaffold for the class III phosphatidylinositol-3 kinase

(PI3K) complex, promoting the localization of autophagy
proteins to the phagophore [59]. During this process,
autophagy and Beclin-1 regulator 1 binds to Beclin-1
(ortholog of yeast Atg6) to stabilize the PI3K complex,
while Barkor (ortholog of yeast Atg14), ultraviolet radi-
ation resistance-associated gene protein, and p150
(ortholog of yeast vacuolar protein sorting-associated
protein 15 [Vps15]) bind to Beclin-1 to promote its
interaction with Vps34 and phagophore formation
[59–64]. Vesicle elongation is mediated by Atg12–
Atg5 [65] and microtubule-associated protein 1A/
1B-light chain 3-II (LC3-II) [66] along with LC3-like
molecules such as gamma-aminobutyric acid type A
receptor-associated proteins (GABARAPs) [67], lead-
ing to the formation of an autophagosome. Atg12–
Atg5 conjugation is mediated by the E1-like enzyme
Atg7 and E2-like enzyme Atg10 [65], while LC3B

Fig. 5 CK1α mediates crosstalk between Wnt/β-catenin and Hedgehog signaling networks. a, b CK1α in Wnt/β-catenin (a) and Hedgehog (b) signaling
pathways. (also reviewed in references [41, 252])
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(ortholog of yeast Atg8) is cleaved at the C terminus by
Atg4B protease to generate cytosolic LC3-I, which is conju-
gated to phosphatidylethanolamine by Atg7–Atg3, yielding
lipidated LC3-II [66]. Finally, syntaxin 17 facilitates autop-
hagosome fusion with the lysosome for autophagolysosome
formation [68], with the cargo then degraded under
low-pH conditions (also reviewed in references [53, 54]).
Among the above-mentioned autophagy-related

genes, LC3B, GABARAPs (including GABARAP,
GABARAPL1, and GABARAPL2), Atg4B, Atg12, and
ULK2 were shown to be directly regulated by the
transcription factor Forkhead box protein O3A
(FOXO3A) [69–71], which is a CK1α substrate that is
phosphorylated at Ser318 and Ser321. Treatment with

the CK1 inhibitor D4476 or short interfering RNA
siRNA-mediated knockdown of CK1α results in
nuclear accumulation of FOXO3A and increased
expression of autophagy-related genes. CK1α protein
abundance is regulated by PI3K/mTOR signaling in-
duced by activated or oncogenic/mutant RAS [72].
DEP domain-containing mTOR-interacting protein
(DEPTOR), an mTOR inhibitor [73], is also phos-
phorylated by CK1α at Ser286/287/291 after priming
phosphorylation by mTOR for subsequent degradation
mediated by β-TrCP [74–76]. CK1α inhibition by
D4476 or siRNA treatment results in upregulation of
DEPTOR followed by suppression of mTOR signaling
and induction of autophagy [75, 76]. CK1α is a key

Table 1 Substrates of human CK1α in major cell signaling pathways

Gene Protein Phosphorylation site Pathway Reference

APC APC S1504, S1505, S1507, S1510 Wnt/β-Catenin [31]

CTNNB1 β-Catenin S45 [5, 6]

CDH1 E-cadherin S846 [33]

LRP6 LRP6 T1493 [34]

JADE1 JADE1 S18, S20 [36, 37]

FOXO3A FOXO3A S318, S321 Autophagy [72]

DEPTOR DEPTOR S286, S287, S291 [74, 75]

SQSTM1 SQSTM1/p62 S349 [79]

BCL10 BCL10 N/A NF-κB [11, 260]

CARD11 CARMA1 S608 [11, 260]

MALT1 MALT1 N/A [11, 260]

FADD FADD S194 [80, 86]

RELA NF-κB/p65 S316 [261]

RIPK1 RIP1 a.a. 293–558 [83]

TNFRSF1A TNFR1/p55 N/A [83]

TNFRSF1B TNFR2/p75 N/A [84]

YBX1 YB-1 S176 [89]

CDC25A CDC25A S79, S82 Cell cycle [92, 93]

MDM2 MDM2 N/A [7, 95]

MDM4 MDMX S289 [8, 9, 96]

MYC c-Myc S252 [94]

TP53 P53 S20 [97]

YWHAQ 14-3-3τ S233 [101]

YWHAZ 14-3-3ζ T233 [101]

BACE1 β-Secretase 1 S498 Alzheimer’s disease [113]

KCNIP3 Calsenilin S63 [115]

CREB1 CREB S108, S111, S114 Parkinson’s disease [128]

LRRK2 PARK8 S910, S935, S955, S973 [131]

PARK2 Parkin S101, S378 [132]

SNCA α-Synuclein S87, S129 [126]

CDK5 CDK5 S159 [134]
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modulator of autophagic flux, and CSNK1A1 knock-
out mediated by transcription activator-like effector
nucleases accelerated the turnover of long-lived
proteins [77]. A similar observation was made in a
previous study demonstrating that CSNK1A1 knock-
down strongly induced autophagic flux [78]. Thus,
CK1α negatively regulates autophagy.
Sequestosome 1 (SQSTM1) (also known as p62)—

an autophagy adaptor/receptor and LC3-binding pro-
tein that targets specific substrates to autophagosomes
[53]—is also phosphorylated by CK1 isoforms at
Ser349 upon accumulation of dysfunctional proteins.
Phosphorylated SQSTM1 accelerates the formation of
inclusion bodies and autophagic protein clearance
[79]. However, the induction of autophagy by
CK1-mediated phosphorylation of SQSTM1 requires con-
firmation by co-immunoprecipitation and loss-of-function
studies. The combination of CK1α suppression and treat-
ment with lysosome inhibitors such as chloroquine leads
to accumulation of ineffective autophagosomes that
deprive cancer cells of nutrients required for growth,
resulting in their death [72]. CK1α therefore is a promis-
ing target for drugs that can be used in combination with

lysosome inhibitors, especially in RAS-driven and
mTOR-activated cancers [72, 80] (Fig. 6 and Table 1).
Notably, there is a discrepancy in the action modes of
CK1α in non-small-cell lung cancer (NSCLC) versus
RAS-driven colon cancer. CK1α overexpression potently
induces autophagic flux in NSCLC via the PTEN/AKT/
FOXO3A/Atg7 axis. It stabilizes phosphatase and tensin
homolog deleted on chromosome ten (PTEN) by abrogat-
ing PTEN phosphorylation and antagonizing neural pre-
cursor cell expressed, developmentally down-regulated
4-1 (NEDD4-1) induced PTEN polyubiquitination, which
suppresses NSCLC cell growth [81]. CK1α exhibits dual
functions in autophagy regulation based on these
evidences.

CK1α in NF-κB signaling
NF-κB signaling is a complex signaling pathway involved
in innate and adaptive immunity, inflammation, lympho-
cyte development, and lymphoid organogenesis, and
includes the components NF-κB (RelA/p65), NF-κB1
(p105/p50), NF-κB2 (p100/p52), RelB, and c-Rel [82].
NF-κB signaling is activated by various extracellular
ligands and their receptors—e.g., tumor necrosis factor

Fig. 6 Regulation of autophagy by CK1α. (also reviewed in references [54, 72])
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receptor (TNFR), interleukin (IL)-1 receptor, Toll-like
receptors, B cell receptor (BCR), and TCR. This activates
the inhibitor of κB kinase (IKK) complex (IKKα, IKKβ,
IKKγ/NF-kappa-B essential modulator), which phos-
phorylates inhibitor of κBs (IκBs) and targets them for
ubiquitination and proteasomal degradation. The free
NF-κB/Rel complex is then modified by a series of
kinases and translocated to the nucleus, where its activa-
tion alone or in combination with other transcription
factors induces the expression of target genes.
TNF-α is a pro-inflammatory cytokine that activates

two distinct cell surface receptors—namely, TNFR1
(p55) and TNFR2 (p75). CK1α binds to and phos-
phorylates TNFR1 and TNFR2, which negatively regu-
late TNF-α-mediated NF-κB activation [83, 84].
Receptor-interacting serine/threonine kinase 1 (RIP1)
is a critical factor in programmed necrosis, but also
mediates TNF-α activation of NF-κB [85]. However,
RIP1 is phosphorylated by CK1α at amino acids 293–
558, which potentiates TNF-α-mediated NF-κB activa-
tion [83]. These two opposing activities suggest that
NF-κB signaling regulates CK1α, which also exhibits
dual functions in immunoregulation. Fas-associated
death domain (FADD) is an adaptor protein that
transmits apoptotic signals through death receptors; it
directly binds to RIP1, and mediates both necrosis
and NF-κB activation. CK1α phosphorylates FADD at
Ser194 [80, 86], which is essential for NF-κB activa-
tion [87]. The caspase recruitment domain family mem-
ber 11 (CARD11)/B-cell chronic lymphocytic leukemia/
lymphoma 10 (BCL10)/mucosa-associated lymphoid
tissue lymphoma translocation gene 1 (MALT1) (CBM)
signalosome complex functions as an adaptor to acti-
vate IKKs in antigen-receptor-induced NF-κB activa-
tion. Notably, CK1α has been shown to directly bind
to the CBM complex leading to NF-κB activation in
response to TCR stimulation in normal lymphocytes,
which largely depends on the association of phos-
phorylated BCL10 and ubiquitinated MALT1 with
CK1α. Inhibitory phosphorylation of caspase recruit-
ment domain-containing membrane-associated guany-
late kinase protein 1 at Ser608 by CK1α impairs its
ability to activate NF-κB. Activated B cell-like subtype
of diffuse large B-cell lymphoma (ABC DLBCL) cells
require CK1α for constitutive NF-κB activity [11, 88];
additionally, the oncoprotein Y box-binding protein 1
is phosphorylated by CK1α at Ser176, resulting in
NF-κB activation [89]. These findings provide
evidence that CK1α has dual functions in NF-κB
signaling (Fig. 7 and Table 1).

CK1α in cell cycle regulation
The mammalian cell cycle is a highly organized and reg-
ulated process initiated by mitogenic, growth, or survival

signals [90] that activate downstream signaling pathways
including mitogen-activated protein kinase signaling and
induce the transcription of early-response genes includ-
ing Myc, activator protein 1, β-catenin, c-Fos, and c-Jun.
These in turn activate the expression of delayed-response
genes including E2F1, cyclin D-cyclin-dependent kinase 4/
6 (CDK4/6, also known as G1-CDK) complex, and cyclin
E-CDK2 (also known as G1/S-CDK) complex. Cell
division cycle 25 homolog A (CDC25A) potentiates the
activity of G1- and G1/S-CDK to promote G1-S transi-
tion; G1/S-CDK then inactivates cyclin-dependent-kinase
inhibitors (CKIs) by phosphorylation and removes the
inhibition of the cyclin A-CDK2 complex (also known as
S-CDK). The pre-replication complex is phosphorylated
by S-CDK and dissociates to ensure duplication of genetic
material and cell division. During G2 phase, the
multi-vulval class B (MUVB) complex associates with
forkhead box M1 (FOXM1), which binds to pro-
moters containing a cell cycle genes homology region
(CHR). This induces the transcription of genes re-
quired for G2-M cell cycle transition such as cyclin
B-CDK1 (also known as M-CDK), which is activated
by CDC25 family members that dephosphorylate
Thr14 and Tyr15 via membrane-associated tyrosine/
threonine 1 (MYT1, also known as PKMYT1) and
WEE1, respectively. Meanwhile, CDK1 is phosphory-
lated at Thr161 by the cyclin H-CDK7 complex, lead-
ing to M phase entry.
CK1α exhibits cell cycle-dependent subcellular

localization, including association with cytosolic vesi-
cles and the nucleus during interphase and with the
spindle during mitosis [20, 21, 91]. As stated above,
β-catenin is a substrate of CK1α, and early-response
genes including Myc and c-Jun are targets of Wnt/β-ca-
tenin signaling. CK1α also phosphorylates CDC25A at
Ser79 and Ser82, which stimulates the binding of
β-TrCP for subsequent ubiquitin-mediated proteolysis
[92, 93]. Additionally, c-myc is phosphorylated by
CK1α at Ser252 through glioma pathogenesis-related
protein 1 (GLIPR1) regulation, which is critical for its
degradation [94]. Thus, CK1α functions as a negative
regulator in the early stages of the G1-S transition.
MDM2 and MDM4 together inhibit DNA binding and

transcriptional activation of p53. Inhibition or knock-
down of CK1α was shown to increase p53, MDM2, and
p21 levels and lead to dephosphorylation of RB, an
inhibitor of the G1-S transition [7]. It was later con-
firmed that treatment with D4476 triggered an increase
in nuclear p53 protein level, although the upregulation
of MDM2 was mainly cytoplasmic rather than nuclear
[95]. This implies that CK1α interacts with MDM2 to
stimulate its binding to p53, leading to ubiquitination
and degradation of the latter. Moreover, MDMX is phos-
phorylated by CK1α at Ser289, which is necessary for
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the MDMX–p53 interaction and inhibition of the
DNA-binding and transcriptional activity of p53 [8, 9, 96].
Thus, CK1α is a positive regulator of the G2-M transition.
p53 is directly phosphorylated by CK1α at Ser20 upon

infection with human herpesvirus 6B viral [97]. Add-
itionally, the Ser20 residue of p53 is phosphorylated by
checkpoint kinase 1/2 in response to DNA damage,
which enhances its tetramerization, stability, and activity
[98, 99]. To date, there is no in vivo or in vitro evidence
for direct phosphorylation of p53 at Ser15 by CK1α;
however, this is thought to occur through regulation of
F-box and WD repeat domain-containing 7 (FBXW7),
which influences the cell cycle and drug resistance [100].
CK1α also phosphorylates 14-3-3τ and 14-3-3ζ at Ser23
and Thr233, respectively [101], thereby modulating their
interaction with and nuclear exclusion of M-CDK (Fig. 8
and Table 1).

Jade-1 phosphorylation by CK1α and polo-like kin-
ase 1 (PLK1) is an important biological event for cell
cycle progression that involves phosphorylated FADD,
which is most abundant during the G2/M phase.
CK1α colocalizes with its substrate FADD, which is
phosphorylated at Ser194 in metaphase and early ana-
phase. Suppression of kinase activity by CKI-7 or
siRNA-mediated CK1α knockdown abrogates G2/M
arrest induced by taxol [80, 86].
Less is known about the function of CK1α in meiosis.

CK1α localizes to the spindle poles, which may not be
required for meiotic progression in mammalian oocytes
since RNA interference (RNAi) or overexpression of
CK1α results in invalid spindle organization and
chromosome segregation [102]. CK1α is activated in
fertilized mouse oocytes but not in metaphase
II-arrested mouse oocytes. Microinjection of a blocking

Fig. 7 Regulation of NF-κB signaling by CK1α. (also reviewed in references [253–257])
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antibody against CK1α during metaphase II arrest and
G2 phase had no effect on the completion of the second
meiosis or first division; however, injection during the
early pronuclear stage prior to S phase blocked kinase
entry into pronuclei and interfered with timely cell cycle
progression to the first cleavage [91]. However, another
study showed that CK1α was upregulated in metaphase
and colocalized with condensed chromosomes during
oocyte maturation and embryonic development; block-
ing CK1α resulted in the failure of polar body 1 (PB1)
extrusion, chromosome misalignment, and metaphase II
plate incrassation, while activating CK1α by pyrvinium
pamoate treatment inhibited oocyte meiotic maturation
and caused severe abnormalities in congression and
chromosome misalignment [103].
Suppression of CK1α in the gut triggers Wnt hyper-

activation but does not lead to tumorigenesis, since
the DNA damage response and cellular senescence
are activated via induction of p53 and its downstream
effector p21 [10]. Notably, CSNK1A1 deficiency
caused hematopoietic stem cells (HSCs) to exit quies-
cence and re-enter the cell cycle; meanwhile,
CSNK1A1 haploinsufficiency induced HSCs expansion
and increased the S/G2/M-phase fractions, whereas

homozygous deletion induced significant induction of
early and late apoptosis and led to HSCs failure
[104]. CK1α loss was associated with cell cycle arrest
in human colorectal polyps [105], and inhibition of
CK1α kinase activity in multiple myeloma cells by
D4476 or siRNA treatment triggered G0/G1 arrest,
prolonged G2/M phase, and increased apoptosis
[106]. These findings indicate that CK1α has dual
functions in cell cycle progression and cell division.

CK1α in neurodegenerative diseases
Alzheimer’s disease (AD) is a progressive neurologic dis-
ease and leading cause of dementia that is characterized
by the irreversible loss of neurons—particularly in the
cortex and hippocampus [107]—leading to memory
disorder, personality changes, and cognitive dysfunction
[108]. Additional histopathological hallmarks include the
presence of extracellular senile plaques containing the
amyloid-β (Aβ) peptides and neurofibrillary tangles
(NFTs) [107].
Aβ peptides are generated by the sequential cleavage

of Aβ precursor protein (APP). In a normal state, the Aβ
domain of APP is cleaved by α-secretases (mainly A dis-
integrase and metalloprotease 10 [ADAM10]), releasing

Fig. 8 Cell cycle regulation by CK1α. (also reviewed in reference [90])
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soluble N-terminal (s)APPα and C-terminal fragment α
(CTFα). The latter is cleaved by the γ-secretase complex
composed of catalytic presenilin 1/2 (PS1/2), nicastrin
(NCT), PS enhancer 2 (PEN2), and anterior pharynx
defective 1/2 (APH1/2), yielding a soluble extracellular
p3 peptide and the APP intracellular domain (AICD).
When the amyloidogenic pathway is activated in AD,
APP is cleaved by β-secretase 1/2, which releases the
ectodomains sAPPβ and CTFβ; subsequent cleavage of
CTFα by γ-secretase yields Aβ and AICD [109, 110].
CK1 isoforms are upregulated in the brain of AD pa-
tients [111, 112] and directly phosphorylate β-secretase
at Ser498, thereby regulating trafficking of β-secretase in
the secretory and endocytic pathways [113]. Calsenilin
(CSEN) binds PS1/2, the catalytic core of γ-secretase
complex, and regulates its APP cleavage activity [114]; it
is primarily phosphorylated at Ser63 by CK1, which pro-
tects it from cleavage by caspase 3 between Asp61 and
Asp64 and generates an ~ 28-kDa C-terminal fragment.
Thus, upregulation of CK1 may underlie AD pathology
by modulating the phosphorylation state of AD-related
proteins [115]. In addition, the sAPPβ ectodomain is
phosphorylated by CK1 at Ser206 during secretory cleav-
age [116], while Aβ in turn stimulates the kinase activity
of CK1 [117].
NFTs are another characteristic of AD. In the normal

state, tau is dephosphorylated and binds microtubules;
hyperphosphorylation by CDK5 and GSK-3β inhibits its
microtubule-binding capacity, resulting in the release of
tau from axonal microtubules into the cytosol, with a
consequent reduction in its solubility and microtubule
destabilization [109, 118]. Tau oligomerization leads to
the formation of NFTs and neuronal apoptosis [119].
CK1 isoforms also contribute to the hyperphosphoryla-
tion of tau, leading to its conversion to an abnormal
AD-like state [120]. CK1α was found to be closely asso-
ciated with paired helical filaments (PHFs) purified from
the brain tissue of AD patients. Thus, CK1α is one of
the major kinases responsible for the pathological hyper-
phosphorylation of tau protein [121].
Parkinson’s disease (PD) is the second most com-

mon late-onset neurodegenerative disease after AD
and is characterized by an accumulation of
α-synuclein—also known as Parkinson disease protein
1 (PARK1)—and mitochondrial dysfunction [122] as
well as bradykinesia, rigidity, and tremor due to the
loss of dopaminergic neurons in the substantia nigra
[123]. Other pathological hallmarks include progres-
sive neuronal loss in a subset of brainstem and mes-
encephalic nuclei and aggregation of α-synuclein in
the form of Lewy bodies and neurites [124].
α-Synuclein phosphorylated at Ser87 and especially

Ser129 is the predominant form of the protein in Lewy
bodies [125]. CK1s (mainly CK1α) and CK2 phosphorylate

α-synuclein at both residues [126, 127]. CREB, a transcrip-
tion factor that induces the expression of peroxisome
proliferator-activated receptor gamma coactivator-1α
(PGC-1α) and confers protection to dopaminergic neu-
rons, is also phosphorylated by CK1α at Ser108/111/114
[128], which may be critical for CRE-mediated gene ex-
pression induced by dopamine and calcium [129].
Mutations in PARK proteins (PARK1–PARK8)—espe-

cially α-synuclein, Parkin (also known as PARK2), phos-
phatase and tensin homolog-induced putative kinase 1
(PARK6), DJ-1 (also known as PARK7), and leucine-rich
repeat kinase 2 (LRRK2) (also known as PARK8)—have
been detected in both familial and sporadic PD [107,
130]. LRRK2 is phosphorylated by CK1α at Ser910/935/
955/973 [131], whereas Parkin is phosphorylated by CK1
at Ser101/378 under okadaic acid treatment [132].
CDK5 is implicated in both AD and PD [133].

CDK5 is phosphorylated by CK1δ at Ser159 [134],
whereas p35—the catalytic and regulatory subunit of
CDK5—is phosphorylated by CK1α. Additionally,
CK1α controls metabotropic glutamate receptor
(mGluR)-mediated Ca2+ currents in the CK1α/CDK5/
dopamine- and cAMP-regulated neuronal phospho-
protein 32 cascade [135]. A recent genome-wide
analysis identified CSNK1A1 as a gene linked to lan-
guage impairment [136]. Thus, CK1α plays an import-
ant role in the pathogenesis of AD and PD (Fig. 9
and Table 1).

CK1α in the host defense response
In addition to NF-κB signaling, CK1α is also involved
in the host defense response against infectious patho-
gens. CK1α phosphorylates type I interferon receptor 1
(IFNAR1) at Ser535 and thereby induces its ubiquitina-
tion and degradation via recruitment of β-TrCP E3 ubi-
quitin ligase in response to endoplasmic reticulum
stress as well as infection [137, 138] by the protozoan
Leishmania major or vesicular stomatitis virus (VSV) in
human cells [137] and by infectious bursal disease virus
in chicken [139]. Newly research have demonstrated
that CK1α mediates degradation of IFNAR1 and type II
IFN (IFN-γ) receptor 1 (IFNGR1) caused by
hemagglutinin of influenza A virus (IAV) [140]. CK1α
also acts as a specific host factor and is required for the
spread of Listeria monocytogenes between cells, which
occurs via formation of productive membrane protru-
sions [141]. In Toxoplasma gondii, CK1α is essential for
replication in host cells; loss of CK1α enhances the
virulence of T. gondii in mice via upregulation of rhop-
try proteins (ROPs), activation of signal transducer and
activator of transcription 3, and suppression of IL-12
production [142].
CK1α phosphorylates rotavirus non-structural protein

5 at Ser67 [143]; the hyperphosphorylated form of the
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protein is required for rotavirus RNA replication [144].
Similarly, CK1α phosphorylates non-structural protein
5A (NS5A) of hepatitis C virus (HCV) at Ser232 and
NS5 of yellow fever virus (YFV) at Ser56, leading to
hyperphosphorylation of NS5A [145, 146] and NS5
[147] for RNA replication. Thus, CK1α is required for
pathogen infection, and specifically for viral RNA repli-
cation (Table 2).

CK1α in cancer
CK1α is a component of the Wnt/β-catenin signaling
pathway that functions as a tumor suppressor [148].
Low levels of CSNK1A1 may contribute to tumorigenesis
and poor prognosis, especially in colorectal cancer
according to the data from open-source databases. How-
ever, nearest research reported that CSNK1A1

overexpression correlates with poor survival in colorec-
tal cancer [149]. The opposite conclusions both lack the
protein data. Notably, the P value of overall survival cal-
culated by Kaplan-Meier method that divided according
to relative CSNK1A1 RNA expression in tumor tissue
are both very close to 0.05. Thus, the opposite conclu-
sions need a large sample approach based on protein
data for final verdict. CK1α interacts with MDMX to
inhibit the DNA-binding and transcriptional activity of
p53 [8, 9, 96], resulting in p53 ubiquitination and
degradation via interaction with MDM2 [7]. CSNK1A1
was unrelated to the survival of sporadic colon cancer
patients with functional p53, but those with low
CSNK1A1 expression had very poor prognosis compared
to patients with high CSNK1A1 levels and
non-functional p53 [150]. Loss of CK1α does not lead to

Fig. 9 Signaling pathways regulated by CK1α in neurodegenerative diseases. (also reviewed in references [109, 110, 118, 124, 258, 259])
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colorectal cancer due to induction of p53, unless both
p53 and CK1α genes are deleted [10]. CK1α ablation
also leads to activation of the IFN signaling pathway,
which prevents unlimited proliferation of intestinal
epithelial cells even when β-catenin is constitutively
active. Concurrent loss of CK1α and IFNAR1 leads to
intestinal hyperplasia, inhibition of apoptosis, and
rapid and lethal loss of the intestinal barrier function
[151]. Thus, CK1α maintains a balance among Wnt/
β-catenin, p53, and IFN signaling. It is also implicated
in RAS-driven cancers such as colon cancer—which
depends on autophagy [72]—and acts as a negative
regulator in prostate cancer [94], liposarcoma [152],
and ultraviolet radiation-induced skin tumors [153].
CSNK1A1 is located on chromosome 5q32 and is

downregulated [154] or mutated [155, 156] in patients
with in MDS del(5q). CSNK1A1 mutations have also
been detected in adult T cell leukemia/lymphoma
(ATL) [157], clear cell renal cell carcinoma [158],
colon cancer [159], and esophageal adenocarcinoma
[160, 161]. Haploinsufficiency of CSNK1A1 leads to
β-catenin activation and expansion of the HSC pool,
whereas homozygous deletion leads to inhibition of
HSC proliferation [104]. The observation that over
50% of patients treated with lenalidomide experienced
remission [162–164] was attributable to the fact that
CSNK1A1 haploinsufficiency heightens sensitivity to
the effects of lenalidomide-induced CK1α degradation
[12], which was shown to be mediated by
valosin-containing protein (VCP)/p97 [165].
CK1α phosphorylates pleckstrin homology domain

leucine-rich repeat protein phosphatase 1 (PHLPP1) at
Ser1359, Thr1363, Ser1379, and Ser1381 leading to its
ubiquitination and degradation, which may promote
colon cancer progression [166]. It also interacts with

hematopoietic pre-B cell leukemia transcription
factor-interacting protein (HPIP) to stimulate renal cell
carcinoma growth and metastasis via activation of
mTOR signaling [167]. CK1α is more highly expressed
in and can serve as a diagnostic marker for malignant
melanoma [168]; however, CK1α suppression in melan-
oma cells causes a switch in β-catenin signaling to
promote metastasis [169, 170]. It is also highly expressed
in multiple myeloma and plasma cell leukemia [171],
and has an oncogenic role in these malignancies. Like-
wise, ABC DLBCL requires CK1α for constitutive NF-κB
activity and survival; lenalidomide may have therapeutic
effects in ABC DLBCL by inducing the degradation of
CK1α [11, 12, 172], as well as in pancreatic cancer in
which CK1α is upregulated. The current evidence
suggests that CK1α dependency resembles
non-oncogenic addiction in which the cancer cell
phenotype depends on hyperactivation of specific genes
including NF-κB [11].
GSK-3β phosphorylates lysine-specific histone

demethylase 1A (KDM1A, also known as LSD1) at
Ser683 after priming phosphorylation at Ser687 by
CK1α. This leads to KDM1A deubiquitination by
ubiquitin-specific protease 22 (USP22) and subsequent
stabilization, which is essential for glioblastoma develop-
ment [173]. IKKβ stimulates the CK1α-mediated degrad-
ation of Rap guanine exchange factor 2 (RAPGEF2) via
phosphorylation at Ser1244 and Ser1248 in response to
hepatocyte growth factor (HGF), and may promote the
dissemination and metastasis of human breast cancer
cells [174].
CK1α interacts with retinoid X receptor α (RXRα)

and enhances cell survival by preventing RXR
agonist-induced apoptosis in cancer cells [175]. CK1α
exerts an anti-apoptotic function by phosphorylating

Table 2 Substrates of human CK1α in various biological events

Gene Protein Phosphorylation site Function Reference

IFNAR1 IFNAR1 S535 Leishmania major/VSV/ IAV [137, 138, 140]

IFNGR1 IFNGR1 N/A IAV [140]

NS5A NS5A S232 HCV [145, 146]

NS5 NS5 S56 YFV [147]

NSP5 NSP5 S67 Rotavirus [143, 144]

HNRNPC hnRNP C1/C2 S240/253, S247/260, S286/S299 mRNA metabolism [183]

TUT1 Star-PAP, RBM21 S6 [184]

AGO2 AGO2 S824, S828, T830, S831, S834 MiRNA-mediated silencing of target mRNA [185]

KDM1A LSD1 S687 Glioblastoma [173]

PHLPP1 PHLPP1 S1359, T1363, S1379, S1381 Colorectal cancer [166]

RAPGEF2 RAPGEF2 S1244, S1248 Cancer metastasis [174]

RXRA RXRα N/A Cancer apoptosis [175]

Bid Bid N/A [176]
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and preventing the caspase-8 dependent cleavage of
BH3-interacting domain death agonist (Bid) in HeLa
cells [176] (Table 2).
CK1α has also been implicated in lung [80, 148, 177–

179], breast [180], esophageal [181], and urothelial [182]
cancers. It was found to promote KRASG12D-induced
lung cancer through phosphorylation of FADD at Ser194
[80]; CK1α inhibition prevented acquired drug resistance
to erlotinib in epidermal growth factor receptor-mutant
NSCLC [179]. On the other hand, the Ki-67-interacting
protein Nucleolar protein interacting with the FHA
domain of pKi-67 (NIFK) enhanced Ki-67-dependent
cell migration and invasion in vitro and metastasis in
vivo by reducing CK1α level in lung cancer [148]. Thus,
CK1α is a potential therapeutic target due to its role as a
conditionally essential malignancy protein.

CK1α in other biological events
The regulation of mRNA metabolism by CK1α is evi-
denced by its localization at nuclear speckles and roles
in the modification of small nuclear ribonucleoprotein
particles (snRNPs) [22] and phosphorylation of hetero-
geneous nuclear ribonucleoprotein C1/C2 (hnRNP C1/
C2)—a nuclear-restricted pre-mRNA-binding protein—
at Ser240/253, Ser247/260, and Ser-286/S299, which
modulates its mRNA-binding capacity [183]. CK1α
phosphorylates speckle-targeted phosphatidylinositol-4,
5-biphosphate K1A-regulated poly(A) polymerase at
Ser6 and induces the transcription of hemeoxygenase 1
(HO-1) and NAD(P)H quinone dehydrogenase 1
(NQO1) [184]. It was also shown to phosphorylate argo-
naute 2 (AGO2) at Ser824-Ser834 (mainly at Ser828),
thereby preventing AGO2-associated target mRNA
binding and attenuating micro (mi)RNA-mediated gene
silencing [185]. Systems biology approaches have also
identified CK1α as a regulator of the DNA damage re-
sponse in embryonic stem cells [186].
CK1α-mediated Wnt/β-catenin signaling is essential

for ontogenesis and stem cell fate determination [187];
for instance, its ablation causes the naked cuticle pheno-
type in Drosophila [188]. Stromal cell derived factor 1α
(SDF1α) inhibits CK1α and attenuates CK1α-mediated
phosphorylation, destabilization, and degradation of
β-catenin, which is important for c-kit+ cardiac stem/
progenitor cell (CSPCs) quiescence under normal condi-
tions and for myocardial regeneration following stress or
injury [189]. CK1α suppression leads to Wnt activation
and transforming growth factor β/mothers against deca-
pentaplegic homolog 2 inhibition, resulting in the
conversion of epiblast stem cells into embryonic stem
cells (ESCs) [190] and promoting the establishment and
maintenance of the pluripotency network [191]. CK1α
directly phosphorylates protein arginine methyltransfer-
ase 1 (PRMT1) (mainly at Ser284/Thr285/Ser286/289)

to suppress grainyhead-like transcription factor 3
(GRHL3)-mediated terminal differentiation and maintain
somatic tissue in a state of self-renewal [192]. Addition-
ally, competitive bone marrow repopulation assays have
demonstrated that CK1α is essential for long-term HSCs
function [193].
Muscarinic acetylcholine receptors (mAChRs) includ-

ing M1 [194] and M3 [195, 196] are G protein-coupled
receptors (GPCRs) [197] that are phosphorylated by
CK1α in an agonist-dependent manner. Phosphoryl-
ation of adaptor protein 3 (AP3) by CK1α is required
for the efficient formation synaptic vesicles from endo-
somes [198]. CK1α-mediated phosphorylation stimu-
lates the degradation of the clock protein period
circadian regulator 1 (PER1), suggesting a function in
circadian rhythm [199]. Mice with heterozygous and
homozygous CK1α mutations in the adipose lineage de-
veloped diabetes as a result of dysregulated glucose me-
tabolism [200]. CK1α also participates in the regulation
of human erythrocyte apoptosis by modulating cyto-
solic Ca2+ activity [201], and promotes homolog pairing
and genome organization by inducing the degradation
of chromosome-associated protein H2 (Cap-H2) and
limiting chromatin-bound Cap-H2 levels in Drosophila
[202].

Regulation of CK1α by endogenous factors
CK1α functions as a broad Ser/Thr kinase that regulates
multiple biological processes (Tables 1 and 2) and is it-
self regulated by various factors. For example, the
miRNA miR-155 binds to the 3′-untranslated region
(3’-UTR) of CK1α mRNA, thereby enhancing Wnt/β-ca-
tenin signaling and cyclin D1 expression and promoting
liposarcoma cell growth [152]. MiR-155 is also upregu-
lated in systemic and localized scleroderma and may
contribute to disease etiology by repressing CK1α and
Src homology 2-containing inositol phosphatase 1
(SHIP-1) [203]. Similarly, miR-9-5p binds to the 3’-UTR
of both CK1α and GSK-3β, which mediate the migration
of mesenchymal stem cells (MSCs) via Wnt/β-catenin
signaling [204].
CK1α regulation at the protein level mostly involves

transport and subcellular localization, activation/inacti-
vation, and degradation. As stated earlier, CK1α is local-
ized at nuclear speckles and regulates multiple aspects
of mRNA metabolism [22, 183]. However, the mechan-
ism underlying CK1α nuclear transport was only
recently elucidated: SON DNA-binding protein localizes
to nuclear speckles and acts as a scaffold to which CK1α
is recruited by family with sequence similarity 83 mem-
ber H (FAM83H) [205]. Additionally, GLIPR1-mediated
redistribution of CK1α from the Golgi apparatus to the
cytoplasm as well increased CK1α protein level is essen-
tial for β-catenin phosphorylation and destruction [94].
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CK1 members were considered as rogue kinases because
their enzymatic activity is apparently unregulated. Of
note, RNA helicase DDX3 was identified as a binding
protein of CK1α which directly stimulates its kinase
activity in a Wnt-dependent manner [206]. But no
endogenous inhibitor of CK1α has been identified to
date, even the degradation of CK1α is mediated by lena-
lidomide [12, 13, 207].

Small molecules targeting CK1α
Small molecules are the most useful research tools
for investigating protein function, since the clinical
application of RNAi and clustered regularly inter-
spaced short palindromic repeats (CRISPR)/CRIS-
PR-associated protein-9 nuclease-mediated gene
knockout—while attractive approaches—has numerous
challenges or is unfeasible. CKI-7—the first CK1 in-
hibitor to be developed [208]—is now widely used,
with a 50% inhibitory concentration (IC50) of 113–
236 μM [80, 209, 210]. IC261 was originally used as a
selective inhibitor of CK1ε/δ [211], but has since been
shown to block the activity of all CK1 isoforms, with
an IC50 of 0.19 μM for CK1α [131, 212]. TG003 was
originally identified as a cell division cycle-like kinase
inhibitor [213] that suppresses CK1δ/ε activity to a
degree equal to or greater than IC261 [214, 215], with
an IC50 of 0.33 μM for CK1α [212]. D4476 is the
most effective and widely used inhibitor of CK1s,
with an IC50 of 200–300 nM [216]. Triamterene—a
drug approved by the Food and Drug Administration
of the United States (FDA) for the treatment of
edematous disorders such as cardiac failure, nephrotic
syndrome, and hepatic cirrhosis [217]—was shown to
induce epiblast stem cell reprogramming by inhibiting
CK1α, with an IC50 of 33.5 μM. However, it also
suppressed the kinase activity of CK1δ and CK1ε,
with IC50 values of 6.9 and 30.4 μM, respectively
[190]. Epiblastin A is a triamterene analog that was
developed for more potent inhibition of CK1α; the
IC50 values for CK1α, CK1δ, and CK1ε are 3.8, 0.8,
and 3.7 μM, respectively [190]. A high-throughput
chemical screen identified longdaysin as a small mol-
ecule that directly binds CK1α and blocks
CK1α-mediated phosphorylation and degradation of
PER1, inhibiting CK1α and CK1δ with IC50 values of
5.6 and 8.8 μM, respectively [199].
At present there are no inhibitors that selectively

target CK1α or other CK1 isoforms. Nonetheless, the
available compounds have been used to study CK1α
function. For example, IC261 was used to inhibit CK1α
phosphorylation of LRRK2 at Ser935 [131]. In another
study, IC261 could not block FADD phosphorylation of
FADD at Ser194 by CK1α, although this was achieved by
CKI-7 and D4476 [86].

Lenalidomide is a thalidomide analog and FDA
approved drug that does not inhibit CK1α but induces
CK1α ubiquitination and degradation via CRL4CRBN E3
ubiquitin ligase at concentrations of 0.1–10 μM [12],
which has been confirmed by structural analyses [13].
Pyrvinium is an FDA-approved antihelminthic drug

that has now been replaced by a more effective,
broad-spectrum alternative, although it is still available
under the Parke-Davis label in Europe and under the
name pamoxan (Sato Pharmaceutical, Tokyo) in Japan
[218]. Pyrvinium is a potent inhibitor of Wnt signaling
that potentiates the kinase activity of CK1α and stabi-
lizes Axin [51]. Oral administration of pyrvinium was
shown to attenuate the expression of Wnt signaling tar-
gets and prevent adenoma formation in APCmin mice
[219], in addition to stimulating wound repair and myo-
cardial remodeling [220]. Remarkably, subsequent study
indicated that pyrvinium did not activates CK1α, but
activated GSK3 and down-regulated Akt signaling path-
way. However, the study lacks the evidence such as
direct interaction between pyrvinium and GSK3 or Akt
[221]. SSTC-104 is a functional analog of pyrvinium that
activates CK1α, and may be able to counter aberrant
Wnt/β-catenin activation by synovial sarcoma (SS)
translocation–SSX (also known as SS18-SSX) fusion pro-
tein [222]. Later studies reported that poor bioavailabil-
ity limited the applicability of pyrvinium, and the new
CK1α activator SSTC3—which has better pharmacoki-
netic properties—was developed [223, 224] (Fig. 10).
Interestingly, the histone deacetylase 6 inhibitor
ACY-1215 was shown to increase Lys49 acetylation and
Ser45 phosphorylation by CK1α without affecting Ser33/
37 and Thr-41 phosphorylation by GSK-3β [225].

Conclusions
Human CK1α is an important protein implicated in
colorectal cancer [10], MDS del(5q) [12, 13], ABC
DLBCL [11], and neurodegenerative diseases [113,
126, 128, 132]. However, there are many open ques-
tions regarding the physiological function of CK1α.
Firstly, the mechanism of CK1α regulation remains
obscure. At the level of transcription, it is unknown
whether the regulatory mechanism involves methyla-
tion/demethylation of the CSNK1A1 gene promoter.
At the post-transcriptional level, a few miRNAs such
as miR-155 and -9-5p are known to negatively regu-
late the CSNK1A1 transcript [152, 203, 204]; however,
it is possible that other as-yet unidentified
non-coding (nc)RNAs including small nuclear RNAs
(snRNAs), small nucleolar RNAs (snoRNAs), long
ncRNAs (lncRNAs), and circular RNAs are also
involved. CK1α protein expression is controlled at the
level of degradation [12, 13] and transport [205].
Although upregulation of PIP2 in the plasma
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membrane was shown to reduce CK1α activity in
erythrocytes and neuronal cells [20, 226–228], there is
little known about the endogenous mechanisms of
CK1α activation/inactivation. As above mentioned,
DDX3 directly stimulates the kinase activity of CK1α
in a Wnt-dependent manner [206]. A study of CK1α
isoforms in zebrafish (Danio rerio) suggested that the
protein kinase activity of CK1α depends on autophos-
phorylation of C-terminal residues [229]. Clarifying
the mechanisms underlying the activation/inactivation
of CK1α in different contexts could provide a basis
for designing highly targeted and more effective
drugs.
CK1α was recently reported that CK1α participates in

p53-dependent paracrine factor secretion in skin hyper-
pigmentation [230]. Future studies will likely provide
additional evidence of a role for CK1α in secretion. In
addition, downregulation of CK1α in lung cancer, which
induced by NIFK is associated with worse prognosis
possibly due to activation of Wnt/β-catenin signaling
and stimulation of tumorigenesis [148]. On the other
hand, the overexpression of CK1α in other malignancies

such as pancreatic cancer has also been linked to poor
outcome. Whether CK1α induces constitutive activation
of NF-κB in pancreatic cancer as in the case of ABC
DLBCL, and how it maintains a balance between Wnt/
β-catenin, NF-κB, and other signaling pathways remains
to be determined.
Splice variants (isoforms) of CK1α have been identified

in cell/animal models such as chicken [231], rat [232]
and human [233]. All isoforms of CK1α have CK1 cata-
lytic properties, but exhibit different binding activity
toward common CK1 substrates [232]. The different iso-
forms of human CK1α have variable amino acid
sequences and distinct functions. CK1α isoform 1 with
an NLS in the 28-amino-acid “L” insert (CK1αLS)—but
not isoforms 2–4—regulates nuclear signaling in
response to H2O2 [14]. CK1αLS also promotes vascular
cell proliferation and intimal hyperplasia [234], and
mediates the effects of NADPH oxidase on vascular acti-
vation [235]. The 12-amino-acid “S” insert near the C
terminus may function as a kinase domain for CK1α in
zebrafish [229]. A phosphoproteome analysis revealed
that isoform 2 of CK1α is phosphorylated at Thr321

Fig. 10 Small molecule inhibitors and agonists of CK1α

Jiang et al. Cell Communication and Signaling  (2018) 16:23 Page 17 of 24



[236], which may be linked to endogenous activation/
inactivation of CK1α.
Del(5q) can be detected in not only MDS but also

acute lymphoblastic leukemia, especially at 5q32 where
the CSNK1A1 gene exists [237]. Thus, CK1α is an
attractive molecular target for both diagnosis and moni-
toring therapy under the treatment of lenalidomide.
CK1α is a Ser/Thr kinase with a large number of sub-
strates, some of which have yet to be experimentally
verified using approaches such as a pull-down assay,
protein interaction domain mapping, and point muta-
tion. A combination of tandem affinity purification and
mass spectrometry may facilitate the discovery of new
substrates. Additionally, identifying or designing more
effective and specific inhibitors, agonists and blocking
peptides [95] should enable CK1α targeting in a variety
of clinical contexts. Application of small molecule library
such as Pfizer compounds and molecular docking algo-
rithm based on the structural information of CK1α may
be the most effective approaches so far. Once these inhi-
bitors,agonists and blocking peptides are identified,
development of therapy specifically targeting CK1α
should open the new avenues for effective management
of a broad spectrum of diseases.
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