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Abstract

Background: Programmed cell death protein 1 (PD-1), a negative co-stimulatory molecule, plays crucial roles in
immune escape. Blockade of the interaction between PD-1 and PD-L1 shows exciting clinical responses in a fraction
of cancer patients and the success makes PD-1 as a valuable target in immune checkpoint therapy. For the rational
design of PD-1 targeting modulators, the ligand binding mechanism of PD-1 should be well understood in prior.

Methods: In this study, we applied 50 ns molecular dynamics simulations to observe the structural properties of
PD-1 molecule in both apo and ligand bound states, and we studied the structural features of PD-1 in human and
mouse respectively.

Results: The results showed that the apo hPD-1 was more flexible than that in PD-L1 bound state. We
unexpectedly found that K135 was important for binding energy although it was not at the binding interface.
Moreover, the residues which stabilized the interactions with PD-L1 were distinguished. Taking the dynamic
features of these residues into account, we identified several residual sites where mutations may gain the function
of ligand binding. The in vitro binding experiments revealed the mutants M70I, S87 W, A129L, A132L, and K135 M
were better in ligand binding than the wild type PD-1.

Conclusions: The structural information from MD simulation combined with in silico mutagenesis provides
guidance to design engineered PD-1 mutants to modulate the PD-1/PD-L1 pathway.
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Background
T cell activation and exhaustion are precisely controlled by
two signaling pathways in immune system: T cell receptor
(TCR) [1] and checkpoint pathway [2]. TCR is expressed
on the surface of T cells and recognizes the epitope pep-
tides presented by the antigen presenting cells (APCs). The
engagement of the epitope by TCR stimulates the specific
T cell clonal expansion, which further protects us from in-
fection, tumorigenesis. However, to prevent excessive im-
mune response and normal tissue damage, the immune
system develops a series of negatively regulation pathways,
in which programmed cell death protein 1 (PD-1) serves as
one of the most important modulators.

Human PD-1 (hPD-1), a member of the CD28 family,
is a type 1 transmembrane immunoglobulin with a total
length of 268 amino acids and its gene locates on the
long arm of chromosome 2, the second largest chromo-
some, which indicates the protein may be cross-linked
with many other gene products and involves in several
important diseases such as inflammation, cancer, and
autoimmune diseases [3]. hPD-1 is composed of three
domains: extracellular domain (ectodomain), transmem-
brane region and cytoplasmic domain from N to C
terminus. The ectodomain is comprised of 150 amino
acids and contains four glycosylation sites (N49, N58,
N74, and N116) and one disulfide bond (C54-C123)
(Fig. 1a). The domain interacts with its ligands (PD-L1),
which expressed on the cells such as antigen presenting
cells, lymphocyte, endothelial cells and fibroblast cells
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(Fig. 1b and c). The helical transmembrane region (TM)
with 21 amino acids (V171-I191) is capable to anchor
into the membrane of immunologic cells and maintains
the topology of the PD1 structure [3]. The cytoplasmic
domain recruits tyrosine phosphatases 1 and 2 (SHP 1
and 2) and terminates the TCR signal transduction to
regulate the activity of T cells [4].
The interaction of the PD-1 with its ligands PD-L1

can promote T cell anergy, apoptosis and exhaustion
(Fig. 1c) to prevent excessive T cell activation and main-
tain self-tissue tolerance [5]. In the physiological condi-
tion, the PD-1/PD-L1 pathway plays a critical role in
negatively regulating immune-mediated tissue damage
[6–9], otherwise excessive immune response may induce
allergic responses [10] or even autoimmunity diseases
[11]. Cancer treatment by modulating the PD-1/PD-L1
axis has been highly promoted since PD-L1 was re-
ported to be over-expressed in a wide variety of solid
tumors [12]. Those tumors are able to manipulate the
PD1/ PD-L1 axis and in turn evade from immune
surveillance. Blocking the interaction between PD-1
and PD-L1 by antibody drugs (such as nivolumab and
pembrolizumab) showed exciting clinical benefits in a
fraction of cancer patients and in broad types of can-
cers. The success of the antibody drugs makes PD-1 a
valuable target in the field of immune checkpoint
therapy.
We sought to better understand the functionality of

the PD-1 molecule and its ligand, PD-L1, using detailed

3D structures and their interactions in molecular dy-
namics simulations. These finding will facilitate rational
drug design of molecules that can modulate PD-1’s path-
ways. Up to date, a series of experimental determined
structures were reported for both hPD-1 and mouse
PD-1(mPD-1) molecules (Table 1), which had a similar
immunoglobulin topology in 3D structures and shared a
sequence identity of 65% (Fig. 1d). Although those 3D
structures revealed the structural basis of PD-1 mole-
cules at the atomic level, several shortcomings in the
structures may hamper our understandings of the struc-
tural features of the molecules and their binding mech-
anism. Firstly, many mutations occurred in the crystal
structures such as N33 M, C93S, C83Sm (mutation
occurred in mPD-1), L128Rm, A132Lm [13–15].
Secondly, X-ray structure models were not always
complete and contained uncertainties in determination
of the atom positions especially at high temperature fac-
tor fractions. For example, the fraction of T59-E61,
S73-N74, D85-D92, A129-K131 could not be modeled in
crystal structures for PD-1 molecule [16–20]. Thirdly,
special conditions such as high salt concentration, low
temperature, pH value or special ions, may be employed
to crystallize a protein system, in which a crystallized
structure may be different to the one in the physiological
conditions. Fourthly, proteins are dynamics in the solu-
tions, and the dynamical features facility the PD-1/
PD-L1 recognition and interaction, but X-ray models are
not sufficient to study the movement of PD-1.

Fig. 1 The topological and functional features of human PD-1. a the compositions of the whole human PD-1 domains, where the PTM modified
residues were noted by red asterisk and the disulphide bond was indicated. b The interaction model of the extracellular domain of human PD-1/
PD-L1 complex (Green: human PD-1; Blue: human PD-L1). c The formation of the PD-1/PD-L1 complex triggers the negative signal for T cell
exhaustion. d Sequence alignments between human and mouse PD-1 molecules, with a sequence identity (ID) of 65%. Green triangle indicated
the sites located at both human and mouse PD-1’s the binding interfaces, while black asterisks indicated the sites only occurred at human PD-1
interface and red asterisks indicated the sites only occurred at mouse PD-1 interface
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Therefore, a thoroughly understanding of the PD-1/
PD-L1 interactions requires the dynamical features in
atomistic details. Molecular dynamics (MD) simulations
play an important role in understanding the protein’s dy-
namics and work perfectly with the structural informa-
tion from crystallography [21–24]. The approach can
mimic the atomic movements dynamically at a given
condition and provide possibilities to study the residues’
flexibility, conformational movements, interactions, and
binding energy distributions, etc., which provide import-
ant hints for drug discovery [25]. Herein in this work we
employed the conventional molecular dynamics simula-
tions by using GROMACS package (version 4.6) to study
structural properties of the binding mechanism of PD-1
molecules with its ligand. We mainly aimed to observe
the structural properties of PD-1 in different states, to
identify the importance of the residues in terms of bind-
ing energies, to perform guided in silico mutagenesis,
and to measure the PD-L1 binding potency of the pre-
dicted mutants.

Methods
Nomenclature
The residue numberings for human and mouse PD-1 mol-
ecules used here are that of the mature, processed, protein

sequence. The beta strands were numbered as A, B, C, D,
E, F, G, H from N to C terminus in this study.

Construction of apo hPD-1, apo mPD-1, PD-1/PD-L1
complexes’ systems
Four simulation systems (Additional file 1: Figure S1)
were constructed to study the structural properties of
PD-1’s extracellular domain and its ligand binding mech-
anism. The protein structure for apo hPD-1 was re-
trieved from 3RRQ and it ranged from N33 to A149,
where E61, D85-D92 were missing in the crystal struc-
ture. The structure of apo mPD-1 was from 1NPU,
where C83 was mutated to S83. The coordinates of the
human PD-1/PD-L1 (hPD-1/PD-L1) complex was
retrieved from 4ZQK. In the complex, the length of
hPD-L1 was 115 amino acids from A18-A132, and
hPD-1 contained 114 amino acids from N33 to E146,
where the fragment of D85-D92 was absent. Since there
was no crystal structure for mouse PD-1/PD-L1
(mPD-1/PD-L1) complex, we extracted mPD-1 structure
from 3BIK, which was a crystal structure for the com-
plex of mPD-1 and human PD-L1 (hPD-L1). The struc-
ture of mPD-L1 was modeled by a homology model
protocol (Molecular Operating Environment (MOE)
package, Version 2015.10) based on hPD-L1 (3SBW)
which shared a sequence identity of 73%. Next, the

Table 1 List of the experimental determined structures of the extracellular domain of PD-1

NO. PDBID Species Length Resolution (Å) R-value Notations Journal & Released date

1 1NPU mouse S34-L149(116) 2.0 0.198 C83S Immunity, 2004

2 3BIK mouse G30-I148(119) 2.65 0.211 C83S PNAS, 2008

3 3BP5 mouse S34-R147(114) 1.8 0.190 C83S PNAS, 2008

4 3BP6 mouse S34-T145(112) 1.6 0.184 C83S,A132L PNAS, 2008

5 3RNK mouse S34-T145(112) 1.74 0.195 C83S,A132L -, 2011

6 3SBW mouse S34-T145(112) 2.28 0.218 C83S,A132L -, 2011

7 3RNQ mouse S34-T145(112) 1.74 0.183 C83S, L128R -, 2011

8 3RRQ human N33-A149(117) 2.1 0.214 A132L,
E61 missing
D85-D92 missing

-, 2011

9 2M2D human M33-E150(118) NMR – C93S, N33 M JBC, 2013

10 4ZQK human N33-E146(114) 2.45 0.207 C93S
D85-D92 missing

Structure, 2015

11 5B8C human S31-E146(116) 2.15 0.184 C93S
T59-E61 missing

Sci Rep, 2016

12 5GGR human S27-E146(120) 3.3 0.221 C93S
S73-N74missing

Nat Commun, 2016

13 5GGS human P31-E146(116) 2.0 0.179 C93S Nat Commun, 2016

14 5IUS Human D29-R147(119) 2.89 0.207 11 mutations # Structure, 2016

14 5JXE human N33-E146(114) 2.9 0.261 C93S
N58-E61 missing
A129-K131 missing

Cell Res, 2017

15 5WT9 human L25-L142 (118) 2.4 0.187 D85-C93 missing Nat Commun, 2017

Note: # The PD-1 mutant contains 11 mutations, which are V64H, L65 V, N66 V, Y68H, M70E, N74G, K78 T, C93A, L122 V, A125V, A132I
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modelled mPD-L1 substituted hPD-L1 in the structure
of 3SBW by using alignment/superimposition function
in MOE package, which created the complex of mPD-1/
PD-L1. A 129-steps energy minimization was performed
to remove bumps and optimize the structure of the
complex (mPD-1/PD-L1) by using MOE package. The
constructed mPD-1/PD-L1 complex contained a PD-1
molecule with a length of 133 amino acids from
L25-S157m, and a PD-L1 molecule with a length of 221
amino acids from (F19-H239m).
All the structures were protonated and optimized at

the physiological conditions (310 K, pH 7.0) in MOE
package.

Atomistic molecular dynamics simulation
The GROMACS 4.6 [26] was applied to perform the mo-
lecular dynamics simulations, where a SPCE water model
was integrated and the water density was set to 1000 g/L.
The simulation box was defined as cubic and the protein/
complex was located in the center of the box with a dis-
tance of 10 Å to the periodic boundary. The force field of
optimized potential for liquid simulation-all atom (OPLS/
AA) [27] was chosen to define and control the parameter
sets in terms of atom, bond, protonation and energy func-
tions. The systems were neutralized at the physiological
concentration of 0.154 mol/L and pH 7.0 by adding so-
dium and chloride ions. The details about the box sizes,
ions’ numbers, and waters in each system were shown in
Additional file 1: Table S1.
Energy minimization (EM) on each system was per-

formed to remove atom bumps and unfavorable interac-
tions via two-step procedures. In the first step, the protein
and ions were restrained as fixed objects, and then a stee-
pest descent minimization algorithm with a step size of
0.01 ps and an update frequency of 1 fs were used to
optimize the positions of water molecules until the max-
imum force between any two atoms was less than
100 kJ mol− 1 nm− 1. In the second step, the entire atoms in
the system were subjected to energy minimization with the
algorithm of conjugate gradient method until the max-
imum force in the system was less than 10 kJ mol− 1 nm− 1.
The systems were then equilibrated via two simulation
steps. At the first step, the systems were gradually heated to
the temperature at 310 K via a NVT ensemble protocol for
1 ns simulation, where the Verlet scheme was chosen to
control the temperature. When the temperatures were
controlled at 310 K, the systems were then equilibrated by
a NPT ensemble protocol for 1 ns simulation, where
Parrinello-Rahman barostat was chosen to control pressure
(constant to 1 Bar) and Verlet scheme was chosen to con-
trol temperature (constant to 310 K). PD-1/PD-L1 s in the
systems were constrained by LINCS method during the
entire equilibration procedure.

Fifty nanoseconds (ns) simulations were performed to
observe the dynamics of the overall PD-1 structure and
atomistic interactions of PD-1/PD-L1 in the physio-
logical conditions. Leap frog integrator with a time step
of 2 fs was employed to control the simulation, where
particle mesh Ewald (PME) method was selected to treat
long range electrostatics and the van der Waals cutoff
was set to 10 Å.

Calculations of binding energy and the solvent accessible
surface area (SASA)
The binding energies between PD-1 and PD-L1 in each
complex were calculated using MM-PBSA, which is one
of the most used methods to compute interaction energy
of biomolecule complexes. In this study, we employed
g_mmpbsa module for binding energy calculation. The
program analyzed the molecular dynamics trajectories
and estimated the binding energies (ΔG) of the PD-1 to
its ligand PD-L1 by calculating four parts separately: the
molecular mechanic energy in the vacuum state (EMM),
the entropic contribution (ΔS), polar solvation (ΔGp)
and non-polar solvent energies (ΔGap) [28]. The binding
energy between two components was estimated by the
following formula (Formula 1) in details:

ΔG ¼< EMM > þ < ΔGp > þ < ΔGap > −T < ΔS >

Where T denotes the temperature (310 K) used in the
simulation environment.
An embedded program “gmx sasa” in gromacs 4.6

(gmx sasa -s md.tpr -f md.trr -o sasa.xvg) was used to
calculate the SAS area of the PD-1/PD-L1 complexes.
The output for the whole trajectories was further aver-
aged by every 100 snapshots. Theoretically, the SASA of
the complex was negatively related to the area of the
binding interface. A simplified formula was applied to
describe the relation between SASA and the area of the
binding interface (Formula 2),

SASAT1−SASAT0 ¼
AIFT1

−AIFT0

� �

2

WhereT0, T1 denote the simulation time points;
SASAT0 ; SASAT1 is the solvent accessible surface area of
the PD-1/PD-L1 complex at the time points; AIFT1

is the
area of binding interface of PD-1 at the time point T1,
AIFT0

is the area of binding interface of PD-1 at the time
point T0.

In silico mutagenesis
Human PD-1/PD-L1 complex after 50 ns simulation was
used to perform in silico mutagenesis. The proposed
residue sites were substituted to 20 other amino acids
and an ensemble of the conformations (The number of
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conformations limit to 25) were generated for each mu-
tant by low-mode MD, which uses implicit vibrational
analysis to focus a 50 ps MD trajectory. MM/GBVI was
applied to calculate the binding affinity of each conform-
ation and PD-L1 molecules. The conformation with the
best binding affinity was selected as the final mutant
structure. The force field used for calculation was
Amber10:EHT, and the implicit solvent was reaction
field (R-Field) model. All calculations were performed in
MOE package.

Mutagenesis and expression of humanPD-1 mutants
Human PD-1 expression vectors (pEGFP-N1-hPD-1)
containing GFP in the frame to C terminus of wild type
or PD-1 mutants. The mutants were generated by
site-directed mutagenesis with the QuickChange kit
(Thermo Fisher, US). The constructs in LB medium
were subjected to DNA sequencing to conform the cor-
rections of the mutations. HEK-293 T cells were trans-
fected with the expression vector pEGFP-N1-hPD-1.
The cells were harvested in 36 h after transfection by
CaCl2 and incubated in flow cytometry buffer (PBS, 2%
FBS), then the expression level of PD-1 was verified by
fluorescein PE conjugated anti-human-PD-1 antibody
(eBioscience, US) staining. The cells were washed and
incubated with hPD-L1-Fc protein (Sino Biological Inc.,
China), then stained with APC conjugated anti-human
IgG (Biolegend, US) on ice for 30 min. Next, the cells
were acquired on a FACS Caliber flow cytometry (BD
Biosciences, US) and analyzed by CELLQuest™ software.
Data were represented as the mean fluorescence
intensity (MFI).

Results
The tertiary structures of PD-1 molecules in different states
Proteins are dynamic in the physiological conditions to
fulfill their functions especially for those protein-protein
interaction entities. To fairly understand the dynamical
properties of hPD-1 in the apo and PD-L1 bound states,
four 50-ns (ns) MD simulations at the physiological con-
ditions (pH 7.0, 310 K, 1Bar, NaCl concentration at
0.154 mol/L) were performed for each system: human
PD-1 in ligand free state (hPD-1 apo state), human PD-1
in PD-L1 bound state (hPD-1 bound state), mouse PD-1
in ligand free state (mPD-1 apo state), mouse PD-1 in
PD-L1 bound state (mPD-1 bound state). The root mean
square deviation (RMSD) curves of the four trajectories
ascending gradually to a plateau, revealed that the PD-1
molecules reaching to structural stable state (Fig. 2a).
The analysis of the MD trajectories showed that the
hPD-1 in the apo state was more flexible than that in
the PD-L1 bound state (Fig. 2a), which is reasonable and
can be explained as that the interaction of PD-1/PD-L1
restricted the freedom of PD-1’s movement. The apo

PD-1 seemed to occur transient conformational changes
during the time of 30–40 ns, and the RMSD value was
2.9 Å at the stable state (Fig. 2a). At the ligand bound
state, hPD-1 was relevantly easy to reach equilibrium
and its RMSD value was 2.5 Å in the equilibrated state.
MD simulation trajectories (apo hPD-1 and bound

hPD-1) contained a list of structures which were compu-
tationally from unstable to stable movements. To obtain
the most stable and most representative structures from
the trajectories, the trajectories were clustered with a
threshold of 10 Å. The trajectory of apo hPD-1 was clus-
tered into 190 groups and the group (group name:
aG188) was the largest one containing 672 structures
(Additional file 1: Figure S2). The trajectory of bound
hPD-1 was clustered into 8 groups and the group (group
name: bG7) was the largest one containing 1612 struc-
tures (Additional file 1: Figure S2). The averaged struc-
tures of aG188 and bG7 were selected as the final
structures for apo and bound hPD-1 models respectively.
Detailed comparisons of hPD-1 between the apo and
bound states reflected that the structures had a RMSD
value of 3.14 Å at the whole Calpha atoms, and a signifi-
cant change happened in the loop region (P-loop) of
P83-R94 with the maximum Calpha RMSD (at residue
P89) of 16 Å which made the local interactions different
(Fig. 2b). In the apo state, D85, D92 and R94 at P-loop
were able to form 7 electrostatic interactions with K78
(Strand D), R114 (strand F) and D117 (strand F) (Fig. 2c).
For example, the interaction energy between D85 and K78
(Strand D) was − 15.2 kcal/mol as shown in Fig. 2c. R94
rendered four interactions with D92 and D117, which had
two extra interactions with R114. However, in the bound
state, the residues at P-loop did not form any interaction
with other regions of the molecule. The P-loop’s conform-
ation was maintained by three inner interactions: one
between Q91-C93, and two between E84-R86 (Fig. 2d).
The atomic fluctuation of each residue was evaluated

during the simulation and the results indicated that
hPD-1 molecule had different pattern in two states
(Fig. 3a). Several residues at the PD-L1 binding area
(indicated by green rectangle in Fig. 3a) had different
flexibility values between the apo and bound state, where
N74 was most flexible (RMSF > 4.4 Å) in the apo state
while it was almost rigid (RMSF < 2 Å) in bound state
(Fig. 3a). By comparing the N74 interaction environ-
ment, we found that N74 located in a turn region which
had two inner hydrogen bonds (S71-Q75, S71-N74). In
the apo state, N74 was slightly constrained by Q75 and
had a weak hydrogen bond (− 0.5 kcal/mol) with solvent
atoms, which made the residue flexible in the solvent
(Fig. 3b). However, in the PD-L1 bound state, N74 was
surrounded by a list of residues from both hPD-1,
hPD-L1 and water molecules. S71, S73 and Q75 together
formed firm interactions with R125 (hPD-L1) and D26
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(hPD-L1), which further gathered 5 water molecules and
restrained N74 at one side. On the other side, M70, N74
and R139 were stabilized with five other water molecules
(Fig. 3c). In addition to the residue of N74, other amino
acids such as T59, P89, R104, and K131 also had signifi-
cant differences in RMSF values between apo and bound
state (Fig. 3a). The big difference of the RMSF values
between apo and ligand bound states encouraged us to
hypothesize that these sites (T59, N74, P89, R104 and
K131) may influence the PD-1/PD-L1 complex forma-
tion. To prove our hypothesis, we additionally per-
formed five in silico mutagenesis at these sites (Mutants
T59A, N74A, P89A, R104A and K131A, respectively),
and observed the mutations at N74 and K131 impaired
the hPD-1/PD-L1 interaction, but T59A, P89A, R104A
merely had any influence to the interaction (Additional
file 1: Figure S3), which was partially proved by a mouse
mutant K98Am (equivalent to K131Ah) [13].

The dynamical properties of the PD-L1 binding area
The biological function of PD-1 is to promote the im-
mune resistance via the interaction with PD-L1. There-
fore, the information about ligand binding area, volume,
hot spot residues, and even the residue types should be
well understood prior the rational drug discovery for tar-
geting PD-1/PD-L1 axis. In this study, we monitored the
changes of the solvent accessible surface area (SASA) of

the PD-1/PD-L1 complexes during MD simulations
(Fig. 4a). The results showed that the SASA values had a
decreased tendency in both human and mouse systems
(Fig. 4a). In human complex, SASA value was decreased
by 300 Å2 (Fig. 4a), and in mouse complex, it was de-
creased by 400 Å2 (Fig. 4a). The decreasing of the total
SASA value means the increasing of the binding inter-
face, therefore, the binding interface was becoming lar-
ger in both human and mouse systems. Based on
Formula 2, the binding interface of hPD-1 was increased
from 220 Å2 to 440 Å2 during the MD simulation (Fig. 4b),
which induced extra contact residues (with a distance less
than 4.5 Å to hPD-L1 molecule). For instance, the contact
residues were Q75, T76, K78, D85, K131, A132 and E136
in the crystal structure (hPD-1/PD-L1, 4ZQK), however
after the MD simulation, N66, Y68, K135 were induced to
the binding interface and involved in the interaction with
hPD-L1. To study the correlation between the area changes
of SASA and binding energy during the MD simulations,
we averagely abstracted 100 samples (500 ps for each
sample) from MD simulation trajectories to calculate the
binding energies (Additional file 1: Figure S4). The results
showed that the binding energies did not improve during
the MD simulations in both hPD-1/PD-L1 and mPD-1/
PD-L1, and the binding energies did not correlate to the
SASA (Additional file 1: Figure S4 B/C), which indicates
that not all contacts were in favor of the binding energy

a b

c d

Fig. 2 Flexibility of the PD-1 molecules during the molecular dynamic simulations. a Root mean square deviation (RMSD) curves of the PD-1 at four
systems. Human PD-1 were less stable than mouse PD-1 and human PD-1 in apo state were more flexible than that in bound state. b The differences
of Cα RMSD of hPD-1 between the apo and bound states in the most common structures from MD simulation trajectory. P89 at P-loop was most
flexible. c In the apo state of hPD-1, residues such as D85, D92 and R94 in the P-loop interacted with K78, R114 and D117. d In the bound state of
hPD-1, the conformation of the P-loop was maintained by three inner interactions between E84-R86, Q91-C93
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and the contact area of PD-1/PD-L1 alone should not be
served as an indicator to the binding energy.
The MD simulation showed that not all residues in

the binding interface constantly served as contact resi-
dues in the entire trajectory, which indicated that some
residues which were identified as contact residues in the
crystal structure may not really contribute to the ligand
binding. However, in another view of point, the residues
which were identified to have no contribution for the
ligand binding may have potential to gain the function
for ligand binding when a proper mutation occurs at
these sites. Therefore, we propose E61, M70, E84, S87,
R112, G119, Y121, A129, and K135 (which had the dis-
tance between 4.5 Å and 6 Å to hPD-L1 molecule) as
candidate sites for mutagenesis and in silico mutagenesis
experiments together with binding energy calculations
were performed at these sites.

Binding energy calculation and residual distributions
Binding energy, equivalent to experimental Kd value, is
of crucial importance to research the protein-protein
interaction (PPI) and biological processes. We investi-
gated the binding free energy of PD-1 with PD-L1 in

order to quantify the strength of PD-1/PD-L1 complex.
In this study, the binding energies between PD-1 and
PD-L1 molecules were estimated by using MM-PBSA
module, which calculated four energy terms: van der
Waals energy, electrostatics, polar solvation, and SASA
energy. The results showed that hPD1/PD-L1 complex
had an absolutely stronger energy than mouse complex
in each energy term (Fig. 5). The binding energy of
hPD-1 and hPD-L1 was − 910.34 kJ/mol, whereas in
mPD-1/PD-L1, the binding energy was relatively weak
(− 593.29 kJ/mol), which was correlated with the experi-
mental data (Kd values were 8.4 μM and 29.8 μM for
human and mouse PD-1/PD-L1, respectively) [15]. We
also found that electrostatics and polar solvation domi-
nated the binding energy compared to other energy
terms (Fig. 5). To investigate the binding mechanism, a
quantitative assessment of the binding energy at individ-
ual residue had been studied as well (Fig. 5). The results
showed that the importance of the individual residues to
the binding energy was not even. In the hPD-1 protein,
positively charged residues K131, K135, R104 were the
key contributors to the binding energy and non-charged
polar residues N33, Q75 and T76 moderately contributed

a

c

b

Fig. 3 The atomic fluctuation of human PD-1 molecule. a The comparison of the root mean square fluctuation (RMSF) of each residue between
apo and bound states. The RMSF value of N74 was significantly influenced by the states (apo and bound). The green rectangles indicated the
regions/residues which had a distance less than 4.5 Å to hPD-L1 in the MD simulation model. b N74 was slightly constrained by Q75and a list of
water solvents in the apo state. c N74 was strongly constraint at one side by S71, S73 and Q75 together with D26hPD-L1, R125hPD-L1. Red dot:
water molecule. The contact energies (kcal/mol) were shown by orange dashed line
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a

b

Fig. 4 The changes of the solvent accessible surface (SAS) of PD-1/PD-L1 complexes during the MD simulations. a The decreasing of solvent
accessible surface area (SASA) value of the complex indicated that the increasing of the binding size of the PD-1 during the simulation. The
increasing trend of the binding interface for mouse PD-1 was bigger than human PD-1’s as indicated by SAS values. b The area of the binding
interface for human PD-1 were 220 Å2 from the crystal structure (4ZQK) and the size increased to 440 Å2 after the MD simulation

Complexes Eele Evdw EPB ESA Gbind

hPD-1/hPD-L1 -363.51    -1427.78 927.07 -46.12 -910.34

mPD-1/mPD-L1 -253.01    -1279.87 981.75 -42.16 -593.29

Human Mouse

a

b c

Fig. 5 Binding energy calculations for human and mouse PD-1/PD-L1 complexes. a The total binding energy and the energy components were
calculated by MM-PBSA module. Human PD-1/PD-L1 had a stronger binding energy than mouse model. Eele: Electrostatic energy; Evdw: Energy
from von del Waal interactions; EPB: Energy from polar solvent effect; ESA:Energy from non polar solvent effect and ΔGbind: The binding energy
between PD-1 and PD-L1 in the complexes. b The decomposition of the binding energies into each residues (human) and c The decomposition
of the binding energies into each residues (mouse). Those individual residues in mouse model had averagely 3 fold higher values in contributing
to binding energy than that in human PD-1 model
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to the ligand binding, whereas the negatively charged resi-
due E61, D85 was adverse to the binding energy. K135
formed an ionic bond with D61 (hPD-L1) and the binding
energy was − 12.2 kcal/mol (Fig. 6a). Q75 and T76 formed
hydrogen bonds with Y123 and R125 in hPD-L1 (Fig. 6b).
N33 did not directly interact with hPD-L1 but its side
chain formed hydrogen bonds with S57 and N58. K131
and R104 provided relatively strong long-term electro-
static potentials and solvation energy to maintain hPD-1
and hPD-L1 together. Similarly, in the mPD-1 protein,
positively charged residues such as K131m, K78m, and
R104m were the key contributors to the ligand binding
(Fig. 5). Those individual contributors had averagely three
folds higher binding energy than that in hPD-1. However,
at the same time, there were more residues especially
negatively charged such as E135 m, E138 m, D105m, and
D62m adverse to the ligand interactions in mPD-1, which
in total made the binding energy of mPD-1 weaker than
hPD-1 (Fig. 5). K131m had direct interactions with
mPD-L1 by formed an ionic bond with D73mPD-L1 and
two hydrogen bonds with Q63mPD-L1 and Q66mPD-L1,
respectively (Fig. 6c). K78m formed a firm ionic bond with
F19mPD-L1 (Fig. 6d). To further study the importance of
those residues for protein-protein interaction (PPI), we
also exclusively measured the distance variations of the
residues involved in the interactions during MD simula-
tions (Fig. 7). The distance changes proved some

interactions firmly contributed to the ligand binding such
as Y68-D122hPD-L1, Q75-R125hPD-L1, K78-F19hPD-L1,
E136-R113hPD-L1, and E136-Y123hPD-L1. Interestingly,
K135-D61hPD-L1 had potential to become as the main con-
tributor to the ligand binding since the distance gradually
decreased during the simulation (Fig. 7h).
Hydrogen bond (HB) plays a vital role in the

non-bonded interactions and each HB would averagely
contribute 5 kcal/mol to the binding energy. However,
the contribution of the hydrogen bonds (HB) in the
MM-PBSA module is highly underestimated. To remedy
the defect, we exclusively monitored the variation of HB
network on the binding interface during the simulation
(Fig. 8). The initial structure of hPD1/PD-L1 complex at
the physiological conditions had a number of 14 HBs
with hPD-L1, and 18 HBs with the solvent. During MD
simulation, the number of HBs between hPD-1 and
hPD-L1 was relatively unchanged but the HBs between
hPD-1 interface area and solvent increased from 18 to
22. In the mouse complex, the total number of HBs was
less than that in human. The MD simulation of mPD-1/
PD-L1 complex made the HB numbers between mPD-1
and mPD-L1 increased from 8 to 10, which however led
to a consequence as that the HBs between mPD-1 and
solvent decreased from 21 to 17. The results showed
that hPD-1 had more hydrogen bonds in the equili-
brated state than that in the mouse equivalent (Fig. 8),

a b

c d

Fig. 6 Interactions between PD-1 (Green) and PD-L1 (Blue). The interactions were indicated by orange dashed line and the interaction energies
were shown in orange (kcal/mol). The interaction energy (< − 5 kcal/mol) was defined as the strong interaction. The interactions for hPD-1/PD-L1
complex were shown in (a/b), and interactions for mPD-1/PD-L1 complex were shown in (c/d). a K135 formed a strong ionic bond with D61hPD-L1.
E136 formed a weak interaction withR113hPD-L1. b Q75, T76 and E136 formed hydrogen bonds with Y123hPD-L1 and R125hPD-L1. c K131m formed a
strong ionic bond with D73mPD-L1 and the interaction between Q66mPD-L1 and A132m was observed. d K78m formed a strong hydrogen bond with the
carboxylic group of F19mPD-L1, and E77m was interacted with K124mPD-L1
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which indicates that hydrogen bonds may dominate the
hPD-1/PD-L1 complex formation.

Mutagenesis and design of engineered proteins
The averaged structure of the group bG7 of hPD-1/PD-L1
complex was the energy favorite conformation and it was
further used to discover the high affinity PD-1 mutants by a
list of in silico approaches such as residue scan, binding
affinity estimation, and low-mode molecular dynamic simu-
lations. Before performing the in silico mutagenesis, we
verified the quality of the in silico mutagenesis on several
PD-1 mutants of which the relative binding abilities were
experimentally measured by Zhang and his coworkers, and
the data were shown in Additional file 1: Table S2 [13]. We
calculated the binding energies of the PD-1 mutants to its
ligand PD-L1 by MM/GBVI scoring function, which was
designed for protein-protein interaction calculation in

MOE package. The correlation between the predicted bind-
ing energy and experimental relative binding value of each
mutant was analyzed (Fig. 9a). The correlation efficient was
R2 = 0.83 which confirmed the quality of the approach
(Fig. 9a). Then we performed an in silico mutagenesis
over the sites which were either with a minimum distance to
PD-L1 between 4.5 Å and 6 Å or identified as hot spot
residues in the MD simulations. 20 amino acids were mod-
eled at the sites once a time and the mutated hPD-1 mole-
cules were then submitted to calculate the binding energy
with hPD-L1. Several mutants such as E61V, M70I, E84F,
S87 W and K135 M (Fig. 9b) with computationally improved
binding affinity (Additional file 1: Figure S5) were identified.

PD-1 mutants in binding PD-L1 by FACS
Based on our prediction by MD simulations and in silico
mutagenesis approach (Fig. 9a), we proposed a list of

Fig. 7 Distances of residues to their interacted pairs in hPD-1/PD-L1 complex during the MD simulation (a-i). The residues were the main
contributors to the binding energy. The distance was increasing during the MD simulation indicated the interaction of the pair was unstable and
weak, and vice versa. The interaction of K135-D61 was becoming stronger because the distance of the pair was decreasing during the simulation
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mutants (Fig. 9b) which may improve the binding affin-
ity to its ligand hPD-L1. The mutants can be divided
into three categories based on their distances to hPD-L1
at the crystal structure (4ZQK) (Fig. 9b). The mutated
sites at mutants Q75F, K78 L, K78 W, A132L had
distances less than 4.5 Å to hPD-L1, but the mutated
sites at mutants K135 M, M70I, A129H, S87 W, E84F
had distances between 4.5 Å to 6 Å to hPD-L1 (Fig. 9b).
The mutated residue at mutant E61V was not able to
interact with hPD-L1 because it was 10 Å to hPD-L1.
To investigate the ligand binding ability, the predicted
mutants were expressed in HEK-293 T cells and their
hPD-L1 binding levels were measured (Fig. 10). We
determined hPD-L1 binding abilities of hPD-1 mutants
as had been described for PD-1/PD-L1 binding experi-
ment [29]. The binding abilities of each mutant and WT
hPD-1 were indicated by MFI value in different hPD-L1
concentrations as shown in Fig. 10a and c. The experi-
ments were performed for four times to avoid random
bias (Fig. 10d and e ). The MFI value of each mutant in
binding to hPD-L1 was standardized to WT hPD-1, and

the standardized MFI values were indicated as the rela-
tive hPD-L1 binding potency (RP), which was the ratio
of the averaged MFI value of hPD-1 mutant to WT
hPD-1 at 100 μM, where the averaged MFI value was
calculated from four independent measurements
(Fig. 10e). As shown in (Fig. 10e), A132L and S87 W
had two folds of PD-L1 binding affinity than WT PD-1,
and the RP values were 2.9 and 2 respectively. The
mutants K135 M, A129H and M70I also improved the
binding of hPD-L1 with a p-value < 0.05 (Fig. 10e1), and
their RPs were 1.44, 1.23 and 1.19 respectively. However,
five other mutants (E61V, Q75F, K78 L, K78 W, E84F)
decreased the binding ability of the PD-1 variants in
binding hPD-L1. Among them, the mutations at K78,
located in the ligand binding interface, decreased the
hPD-L1 binding significantly at the P-value of 0.01
levels. The RP values between these mutants and WT
PD-1 were statistically significant, which indicates that
these predicted sites were important to the ligand
binding of PD-1, even though the site (E61) was remote
to PD-L1 in the crystal structure (Fig. 9b).
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Fig. 8 The variation of hydrogen bonds (HBs) during the MD simulation. The number of the hydrogen bonds between the residues at PD-1 interfaces
and the atoms from PD-L1 (a) or solvent (b). The number of the HBs which were formed with hPD-L1 remained stable (a, Black line) but which were
formed with solvents in hPD-1/PD-L1was increasing during the MD simulation (b, Black). The number of HBs which were formed with mPD-L1 was
increasing (a, Blue) but which were formed with solvents in mPD-1/PD-L1 system was decreasing during the MD simulation (b, Blue)
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Discussion
PD-1 has recently been one of the most successful clinical
targets in immunotherapy [2], since the modulation of the
PD-1/PD-L1 pathway can significantly promote the tumor
clearance by immune system for a broad cancer types. Up
to date, five antibody drugs targeting the PD-1/PD-L1 axis
were approved by FDA. Many peptides and even small
molecule modulators of the target have been under devel-
opment [30, 31]. Although the PD-1/PD-L1 related drugs
have been successfully applied in clinic and several modu-
lators showed bioactivities, the structural properties of
hPD-1/PD-L1 and its binding mechanism in molecular
level still needs to be studied. For example, whether the
PD-1 molecule goes through a conformational change
from its apo state to a ligand bound state? Which residues
are responsible for the protein-protein interactions, or
have potential to be mutated for binding affinity enhance-
ment? To elucidate those questions, we performed con-
ventional molecular dynamics in four different systems:
hPD-1, mPD-1, hPD-1/PD-L1 complex, mPD-1/PD-L1
complex in the present study.

Interactions to stabilize the integrity of the structures
MD trajectories demonstrated that the overall conformation
of hPD-1 was more flexible than mPD-1 no matter in apo or

ligand bound state. This can be subject to the number of the
intra-molecular interactions in PD-1 structures. In hPD-1
molecule, only 3 pairs of interactions (E46-R115; R94-D117;
D85-K78) had contact energies greater than − 10 kcal/mol,
whereas in mPD-1 molecule there were 6 pairs of interac-
tions (R94-D117m; R115-E146m; E46-R147m;R33-E135m;
E46-R115m; E61-R103m) which maintained the stability of
the structure. In order to observe the influence of the inter-
actions on the structural stabilization, several sites (E46Am,
R94Am, R115Am, E135Am in mPD-1, and E46A, R94A in
hPD-1) were mutated by in silico approach, which did not
alter the total net charges of PD-1 molecules but broke the
relevant interactions. The results showed that the structure
of the mutants (E46A/R94A/R115A/E135Am and E46A/
R94A) were unstable when compared to the wild type
PD-1 s (Additional file 1: Figure S6). The mutagenesis results
confirmed that some charged intramolecular interactions
contribute to the structural stability. Therefore, considering
the importance in structure integrity of these charged resi-
dues, mutagenesis experiment occurring on such sites is sug-
gested to be avoided.

Residues for PD-L1 binding
The binding interface of PD-1/PD-L1 complex was well
studied since numerous crystal structures of the complex

a

b

Fig. 9 In silico mutagenesis experiments were performed by using MM/GBVI scoring function based on the MD simulation model of hPD-1/PD-L1, as
descripted in Materials and Methods. a Correlation between experimental binding affinity and calculated binding energy, with the correlation
coefficient (R2) of 0.83. X-axis indicates the relative binding ability of a mutant and the y-axis indicates the calculated binding energies between hPD-1
mutants and hPD-L1.The15 datasets of the relative binding ability were from literature (ref 13). b Mutants were computationally improved the binding
affinity and had a better stability than wild type hPD-1. The minimum distances of the mutated sites to hPD-L1 were measured in the crystal structure
(4ZQK) and MD simulation model respectively
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were deciphered (Table 1), which provides possibilities to
detect binding interface. However, the binding interface,
as a part of proteins, which are dynamic, keeps changing
with its size, shape and volume especially when it is in the
state of interacting with its ligands (Fig. 4). Therefore,
some residues which were adjacent to PD-L1 in the crystal
structures may drift away from PD-L1 during a MD relax-
ation process. This kind of residues may serve as potential
candidates for mutagenesis in the design of “gain of func-
tion”mutants. To prove the hypothesis, we computationally
predicted a list of hPD-1 mutants at these sites (Fig. 9b).
The predicted mutants were expressed in HEK293T cell
and their binding affinities to hPD-L1 were measured by
FACS for four repeats to avoid random bias (Fig. 10). All
the mutations had affected to the ligand binding (Fig. 10e)
either they enhanced or impaired the hPD-1/PD-L1 inter-
actions. The mutated sites, such as M70, E84, S87, A129,
K135, had distances of 4.5 to 6 Å to hPD-L1 in the

complex, therefore they did not directly form
inter-molecular interactions (Additional file 1: Figure S5).
The mutants at these sites enhanced the PD-L1 binding af-
finity except E84F (Fig. 10e). This may decreased the dis-
tance of the mutated sites to hPD-L1. However, the
mutations at the sites which had the distances less than
4.5 Å to hPD-L1 mostly impaired the ligand binding ability
such as mutants Q75F, K78 L, K78 W. E61 was the only
predicted site which had a distance more than 6 Å to
hPD-L1, and the mutation at the solvent exposed site
(E61V) slightly impaired the binding affinity to hPD-L1
(Fig. 10). In the wild type hPD-1 molecule, M70 interacted
with both E136 and R139. The mutant M70I broken the
interaction between those sites and offered a chance for
E136 contacting with R113hPD-L1. Interactions between
E84-S87 and Q133-K135 were observed in the wild type,
however the mutants S87 W and K135 M abolished these
interactions, which unleashed E84 and Q133 free to contact

Fig. 10 The hPD-L1 binding ability of hPD-1 mutants. The binding of hPD-1 mutants with hPD-L1-Fc were measured by FACS. a, c Representative flow
cytometry analyses of hPD-L1 binding to the HEK-293 T cells expressing WT hPD-1 or the mutants. b, d The binding affinity between hPD-1 mutants and
hPD-L1 at different protein concentrations. Each point represents the mean ± S.E. of four independent measurements. e1,e2 Relative PD-L1 binding
potency (RP) values of the hPD-1 mutants. (mean ± S.E., n= 4). *, p< 0.05; **, p< 0.01 versus PD-1 (dashed line). RP is the ratio of the averaged MFI value of
hPD-1 mutant to WT hPD-1 at 100 μM. The averaged MFI value was calculated from four independent measurements
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with hPD-L1. Mutant E84F also abolished the interaction
of E84-S87, but the mutant moderately impaired the
hPD-L1 binding (Fig. 10). The mutations at Q75 and K78,
located in the ligand binding interface, impaired hPD-1/
PD-L1 interaction in agreement with our hypothesis that
mutations performed at the binding interface had little
chance to improve the ligand binding ability.
The experimental data (Fig. 10) indicated that in silico

predictions combined with the MD simulation are
powerful tool to identify the important sites regarding to
ligand binding. The method had also shown their effi-
ciency in predicting ‘gain of function’ mutations for
those sites between 4.5 to 6 Å to hPD-L1. However, the
method seemed not suitable to the prediction of the
“gain of function” mutations for the sites in the binding
interface (the residues with a distance less than 4.5 Å to
hPD-L1).

Multi-site mutagenesis
It is not rare that mutations occurred on multiple sites
improve the ligand binding ability, and the multi-site
mutations can be performed via in silico approach theor-
etically. However, several concerns prevent us to apply
the approach. First, computational approaches need to
substitute every 20 residue types for each site and all
rotamers of each mutation state should be evaluated by
an energy minimization process to coincide with the
minimum global energy structure for one single muta-
tion. Therefore, the mutational spaces expand dramatic-
ally big to be handled by the current computational cost
[32]. Second, multi-site mutagenesis is briefly a sum of a
list of single mutations. The process introduces numerous
uncertainty and assumptions, which do not guarantee the
accuracy of the binding affinity prediction.
To overcome such challenges, we propose a strategy

to perform multi-site mutagenesis. First, it is suggested
to identify the candidate sites for mutations but not the
whole sites. Here, several factors may help to identify
the candidate sites. First, the most flexible and most
rigid sites in the RMSF analysis, such as T59, N74, P89,
and R104 in the hPD-1 molecule; Second, the residues
which are key contributors to the binding energy, such
as N33, Q75, T76, R104, K131 and K135; Third, it is
better to avoid the residues which are involved into the
intra-interactions, or the residues at the binding inter-
face. On the other hand, it is recommended to combine
the in silico approach with in vitro binding experiments
such as surface plasma resonance (SPR). For instance, a
proper in silico approach serves to predict a list of the
single site mutants, and then the predicted mutants are
subject to SPR measurement for PD-1/PD-L1 binding
affinity. The high affinity mutants are served as starting
points and further submitted to do in silico mutagenesis
until the desired multiple-sites mutants were identified.

Binding energy between PD-1/PD-L1
Binding energy of a reaction is a single most important
thermodynamic property, which correlates the structure
and function of a complex formation [33]. A wide range
of concepts are applied for the binding energy calcula-
tion, such as free energy perturbation (FEP), umbrella
sampling, thermodynamic integration (TI), Monte Carlo
simulation, Poisson Boltzmann equation, and micro-
scopic all-atom linear response approximation (LRA)
[34]. Among these calculation approaches, FEP and TI
require a molecular dynamical trajectory of a molecule
from an initial state to the ligand bound state, therefore
the calculation under such methods are computationally
expensive. MM-PBSA has a lower computational cost
compared to FEP and TI, but can yield a more reliable
free energy output than other scoring functions such as
GBSA [35]. Therefore, in this study, MM/PBSA was
chosen for binding energy calculations. With the con-
cept of molecular mechanics calculations and continuum
solvation models [28], MM-PBSA module performed well
for calculation of the binding energy in the PD-1/PD-L1
systems and the calculated binding energies were corre-
lated to the experimental data. Though the results gener-
ated by the module were acceptable, it should be
mentioned that the entropy was not calculated in the mod-
ule since the PD-1/PD-L1 system was too big to estimate
the entropy contribution. For estimation of the binding en-
ergy, only every eight snapshots of the MD trajectory were
submitted to the module, but not every snapshot for the
calculation, which may improve the accuracy of the bind-
ing energy estimation. It is noted that dielectric constant
(DC) values influenced the output of the binding energy
calculation, while in this study we empirically set the value
as 4 for all proteins in the system, and it generated a reli-
able data. However, we suggest that a list of DC values such
as 1, 2, 4, or 8 should be carefully tested before an official
MD simulation and MM-PBSA are performed.

Hotspots detection
Hotspot residues have many definitions such as the resi-
dues which are highly conserved in sequence alignments
or topological similarity in homologues, contribute the
most to the binding energy, or have an acceptable distance
with its ligands, are defined as hotspots [36–38]. Various
algorithms such as Shannon entropy, Henikoff–Henikoff
sequence weights, Bayesian networks were developed to
detect hotspots. How Madej and his team analyzed 600
non redundant crystal complexes and observed that the
small molecule or peptide binding sites were largely
overlapped with hot spots residues [36]. Therefore, the de-
tection of the hotspot residues of PD-1 molecule may be
meaningful to the drug development in cancer
immunotherapy by modulating the PD-1/PD-L1 pathway.
The ligand binding area of the PD-1 was deciphered by
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crystallography [16], but knowledge about hot spots are
still little. In this study, we proposed a list of residues as
hotspots which either were the key contributors to
binding affinity (R104, K131, K135), or formed the direct
interactions with hPD-L1 (Q75, T76, K78, D85, E136), as
well as the most rigid residues (N74). The hotspot resi-
dues were important for hPD-L1 binding and alteration at
the sites may impair hPD-1/PD-L1 interactions, which
were partially proved by our experimental results for mu-
tants such as Q75F, K78 L and K78 W (Fig. 10).

Conclusions
Programmed cell death protein 1 (PD-1) is an immune
checkpoint which is expressed in a variety of immune cells
such as activated T cells, tumor-associated macrophages,
dendritic cells, B cells. PD-1 serves as a negative regulator
for the induction of immune tolerance by forming a com-
plex with its ligand PD-L1. Characterization of the binding
mechanism of PD-1/PD-L1, especially in a dynamically
view rather than a snapshot, can help to elucidate protein
function and gain knowledge to develop therapeutic mod-
ulators. In this study, we applied conventional molecular
dynamics simulations to observe the structural properties
of the PD-1 s. The 3D conformations of the PD-1 s in the
ligand-bound and ligand free (apo) states were different
which indicates that the PD-1 has changed its conform-
ation during complex formation. For this reason, the apo
structure of hPD-1, prior hPD-1/PD-L1 complex forma-
tion, is recommended as the target for drug discovery. A
comparison of atomic fluctuation in the apo and bound
state showed N74, P89, R104, and K131 were significantly
different in each state, and we studied the local interaction
environments around these residues, which may influence
the ligand binding ability of hPD-1 and may serve as can-
didates for drug discovery. To well understand the ligand
binding mechanism, the binding energies were calculated
by MM-PBSA module and the calculated data were corre-
lated to the experimental data. The total binding energy
was further decomposed into each residue and several key
residues (R104, K131, K135) in hPD-1 were identified.
Based on the MD simulations and in silico mutagenesis,
we expressed a list of hPD-1 mutants at HEK293T cells
and measured their binding affinities to hPD-L1, which
proved that the feasibility of using in silico approaches to
design engineered proteins. Besides, the mutants M70I,
S87 W, A132L and K135 M improved hPD-L1 binding abil-
ity compared to WT hPD-1, and those mutants showed po-
tential to modulate the interaction of hPD-1 and hPD-L1.

Additional file

Additional file 1: Figure S1. Four simulation systems were constructed for
conventional molecular dynamics simulations. Figure S2. Cluster analysis of
50 ns MD simulation trajectories for human PD-1 systems. Figure S3. In silico

Alanine scan at the sites T59, N74, P89, R104, K131. Figure S4. Binding energy
changes during 50 ns MD simulations in human and mouse PD-/PD-L1
complexes, respectively. Figure S5. The locations of the residues (E61, M70,
E84, S87, K135) at human PD-1 molecule. Figure S6. Residues (E46/R94, E46/
R94/R115/E135) stabilized the integrity of the PD-1 structures. Table S1.
Information of four MD simulation systems. Table S2. Summary of 15 mutants
which were applied to study the correlation between experimental and
prediction values. (DOCX 5284 kb)

Abbreviations
HB: hydrogen bond; hPD-1: human PD-1; hPD-L1: human PD-1; K78m: K78 in
mouse PD-1; MD: Molecular dynamics simulation; MM-PBSA: Molecular mechanics/
Poisson-Boltzmann surface area; mPD-1: mouse PD-1; mPD-L1: mouse PD-1; PD-
1: programmed cell death protein 1; PD-L1: programmed cell death protein ligand
1; Q63 mPD-L1: Q63 in mouse PD-L1; R113hPD-L1: R113 in human PD-L1

Acknowledgements
We are grateful to Prof. Wei Liu, for analyzing the MM-PBSA data and also
thank Dr. YK Liu for providing the High performance computer clusters for
MDsimulation calculations.

Funding
This work was supported by National Natural Science Foundation of China
(Project No. 31500620, U1604286, 31700677), and the grants from Sci-Tech
Key Projects (1611003101000) and Outstanding Talent Projects
(174200510022) of Henan Province.

Availability of data and materials
The datasets used and analyzed during the current study are available from
the corresponding author on reasonable request.

Authors’ contributions
JD and YG designed the experiment. JD, YQ, Ya W, W Zhao, W Zhai, Yu Q,
CW performed the experiments and analyzed the data. JD was a major
contributor in writing the manuscript. All authors read and approved the
final manuscript.

Ethical approval and consent to participate
Not applicable

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 28 February 2018 Accepted: 28 May 2018

References
1. Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annu Rev

Immunol. 2009;27:591–619.
2. Sharma P, Allison JP. The future of immune checkpoint therapy. Science.

2015;348(6230):56–61.
3. Shinohara T, et al. Structure and chromosomal localization of the human

PD-1 gene (PDCD1). Genomics. 1994;23(3):704–6.
4. Karwacz K, et al. PD-L1 co-stimulation contributes to ligand-induced T

cell receptor down-modulation on CD8+ T cells. EMBO Mol Med. 2011;
3(10):581–92.

5. Shi L, et al. The role of PD-1 and PD-L1 in T-cell immune suppression in
patients with hematological malignancies. J Hematol Oncol. 2013;6(1):74.

6. Gianchecchi E, Delfino DV, Fierabracci A. Recent insights into the role of the
PD-1/PD-L1 pathway in immunological tolerance and autoimmunity.
Autoimmun Rev. 2013;12(11):1091–100.

7. Fife BT, Pauken KE. The role of the PD-1 pathway in autoimmunity and
peripheral tolerance. Ann N Y Acad Sci. 2011;1217:45–59.

8. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and
autoimmunity. Immunol Rev. 2010;236:219–42.

Du et al. Cell Communication and Signaling  (2018) 16:25 Page 15 of 16

https://doi.org/10.1186/s12964-018-0239-9


9. Sharpe AH, et al. The function of programmed cell death 1 and its ligands
in regulating autoimmunity and infection. Nat Immunol. 2007;8(3):239–45.

10. Wang J, et al. Establishment of NOD-Pdcd1−/− mice as an efficient animal
model of type I diabetes. Proc Natl Acad Sci U S A. 2005;102(33):11823–8.

11. Chen MH, et al. Inverse correlation of programmed death 1 (PD-1)
expression in T cells to the spinal radiologic changes in Taiwanese patients
with ankylosing spondylitis. Clin Rheumatol. 2011;30(9):1181–7.

12. Dong H, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a
potential mechanism of immune evasion. Nat Med. 2002;8(8):793–800.

13. Zhang X, et al. Structural and functional analysis of the costimulatory
receptor programmed death-1. Immunity. 2004;20(3):337–47.

14. Lin DY, et al. The PD-1/PD-L1 complex resembles the antigen-binding Fv
domains of antibodies and T cell receptors. Proc Natl Acad Sci U S A. 2008;
105(8):3011–6.

15. Cheng X, et al. Structure and interactions of the human programmed cell
death 1 receptor. J Biol Chem. 2013;288(17):11771–85.

16. Zak KM, et al. Structure of the complex of human programmed death 1,
PD-1, and its ligand PD-L1. Structure. 2015;23(12):2341–8.

17. Horita S, et al. High-resolution crystal structure of the therapeutic antibody
pembrolizumab bound to the human PD-1. Sci Rep. 2016;6:35297.

18. Lee JY, et al. Structural basis of checkpoint blockade by monoclonal
antibodies in cancer immunotherapy. Nat Commun. 2016;7:13354.

19. Na Z, et al. Structural basis for blocking PD-1-mediated immune suppression
by therapeutic antibody pembrolizumab. Cell Res. 2017;27(1):147–50.

20. Tan S, et al. An unexpected N-terminal loop in PD-1 dominates binding by
nivolumab. Nat Commun. 2017;8:14369.

21. González MA. Force fields and molecular dynamics simulations. Collection
SFN. 2011;12:169–200.

22. Hansson T, Oostenbrink C, van Gunsteren W. Molecular dynamics
simulations. Curr Opin Struct Biol. 2002;12(2):190–6.

23. Karplus M, McCammon JA. Molecular dynamics simulations of biomolecules.
Nat Struct Biol. 2002;9(9):646–52.

24. Karplus M, Kuriyan J. Molecular dynamics and protein function. Proc Natl
Acad Sci U S A. 2005;102(19):6679–85.

25. Borhani DW, Shaw DE. The future of molecular dynamics simulations in
drug discovery. J Comput Aided Mol Des. 2012;26(1):15–26.

26. Pronk S, et al. GROMACS 4.5: a high-throughput and highly parallel open
source molecular simulation toolkit. Bioinformatics. 2013;29(7):845–54.

27. Felts AK, et al. Distinguishing native conformations of proteins from decoys
with an effective free energy estimator based on the OPLS all-atom force field
and the surface generalized born solvent model. Proteins. 2002;48(2):404–22.

28. Kumari R, et al. g_mmpbsa–a GROMACS tool for high-throughput MM-PBSA
calculations. J Chem Inf Model. 2014;54(7):1951–62.

29. Chang HN, et al. Blocking of the PD-1/PD-L1 interaction by a D-peptide
antagonist for Cancer immunotherapy. Angew Chem Int Ed Engl. 2015;
54(40):11760–4.

30. Bourgeois DL, Kreeger PK. Partial least squares regression models for the
analysis of kinase signaling. Methods Mol Biol. 2017;1636:523–33.

31. Guzik K, et al. Small-molecule inhibitors of the programmed cell Death-1/
programmed death-ligand 1 (PD-1/PD-L1) interaction via transiently induced
protein states and dimerization of PD-L1. J Med Chem. 2017;60(13):5857–67.

32. Sacan A, Ekins S, Kortagere S. Applications and limitations of in silico
models in drug discovery. Methods Mol Biol. 2012;910:87–124.

33. Singh N, Warshel A. Absolute binding free energy calculations: on the
accuracy of computational scoring of protein-ligand interactions. Proteins.
2010;78(7):1705–23.

34. Christ CD, van Gunsteren WF. Enveloping distribution sampling: a method
to calculate free energy differences from a single simulation. J Chem Phys.
2007;126(18):184110.

35. Homeyer N, Gohlke H. Free energy calculations by the molecular mechanics
Poisson-Boltzmann surface area method. Mol Inform. 2012;31(2):114–22.

36. Thangudu RR, et al. Modulating protein-protein interactions with small
molecules: the importance of binding hotspots. J Mol Biol. 2012;415(2):443–53.

37. Keskin O, Ma B, Nussinov R. Hot regions in protein–protein interactions: the
organization and contribution of structurally conserved hot spot residues. J
Mol Biol. 2005;345(5):1281–94.

38. Moreira IS, Fernandes PA, Ramos MJ. Hot spots–a review of the protein-protein
interface determinant amino-acid residues. Proteins. 2007;68(4):803–12.

Du et al. Cell Communication and Signaling  (2018) 16:25 Page 16 of 16


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Nomenclature
	Construction of apo hPD-1, apo mPD-1, PD-1/PD-L1 complexes’ systems
	Atomistic molecular dynamics simulation
	Calculations of binding energy and the solvent accessible surface area (SASA)
	In silico mutagenesis
	Mutagenesis and expression of humanPD-1 mutants

	Results
	The tertiary structures of PD-1 molecules in different states
	The dynamical properties of the PD-L1 binding area
	Binding energy calculation and residual distributions
	Mutagenesis and design of engineered proteins
	PD-1 mutants in binding PD-L1 by FACS

	Discussion
	Interactions to stabilize the integrity of the structures
	Residues for PD-L1 binding
	Multi-site mutagenesis
	Binding energy between PD-1/PD-L1
	Hotspots detection

	Conclusions
	Additional file
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethical approval and consent to participate
	Competing interests
	Publisher’s Note
	References

