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A p53/TIAF1/WWOX triad exerts cancer ")
suppression but may cause brain protein
aggregation due to p53/WWOX functional
antagonism
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Abstract

Background: Tumor suppressor WWOX physically binds p53 and TIAF1 and together induces apoptosis and tumor
suppression. To understand the molecular action, here we investigated the formation of WWOX/TIAF1/p53 triad
and its regulation of cancer cell migration, anchorage-independent growth, SMAD promoter activation, apoptosis,
and potential role in neurodegeneration.

Methods: Time-lapse microscopy was used to measure the extent of cell migration. Protein/protein interactions were
determined by co-immunoprecipitation, FRET microscopy, and yeast two-hybrid analysis. The WWOX/TIAF1/p53 triad-
mediated cancer suppression was determined by measuring the extent of cell migration, anchorage-independent
growth, SMAD promoter activation, and apoptosis. p53-deficient lung cancer cell growth in nude mice was carried out
to assess the tumor suppressor function of ectopic p53 and/or WWOX.

Results: Wivox-deficient MEF cells exhibited constitutive Smad3 and p38 activation and migrated individually and much
faster than wild type cells. TGF-(3 increased the migration of wild type MEF cells, but significantly suppressed Wwox
knockout cell migration. While each of the triad proteins is responsive to TGF-3 stimulation, ectopically expressed triad
proteins suppressed cancer cell migration, anchorage-independent growth, and SMAD promoter activation, as well as
caused apoptosis. The effects are due in part to TIAFT polymerization and its retention of p53 and WWOX in the
cytoplasm. p53 and TIAF1 were effective in suppressing anchorage-independent growth, and WWOX ineffective. p53
and TIAF1 blocked WWOX or Smad4-regulated SMAD promoter activation. WWOX suppressed lung cancer NCI-H1299
growth and inhibited splenomegaly by infllmmatory immune response, and p53 blocked the event in nude mice. The
p53/WWOX-cancer mice exhibited BACE upregulation, APP degradation, tau tangle formation, and amyloid 3 generation
in the brain and lung.

Conclusion: The WWOX/TIAF1/p53 triad is potent in cancer suppression by blocking cancer cell migration, anchorage-
independent growth and SMAD promoter activation, and causing apoptosis. Yet, p53 may functionally antagonize with
WWOX. p53 blocks WWOX inhibition of inflammatory immune response induced by cancer, and this leads to protein
aggregation in the brain as seen in the Alzheimer’s disease and other neurodegeneration.
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Background

WW domain-containing oxidoreductase, designated
WWOX, FOR or WOX1, is a 46-kDa tumor suppressor
protein ([1-6]; reviews). WWOX gene is located on a com-
mon fragile site FRA16D on chromosome ch16q23.3-24.1,
encompassing a million bases [1-8]. Loss of WWOX pro-
tein occurs as a result of genetic alterations [1-6], promoter
hypermethylation [9-12], and translational blockade [13],
and this may be associated with cancer development [1,
2, 4-6]. Significant downregulation of WWOX protein
is frequently seen in metastatic cancer cells [1-6]. Loss
of WWOX upregulates the JAK2/STAT3 pathway that
drives cancer metastasis in triple negative breast cancer
cells [14]. Also, loss of WWOX in ovarian cancer cells
acquires enhanced migration and metastasis due to altered
interactions between integrin o3 and fibronectin [15].
WWOX suppresses the expression of RUNX2 and thereby
blocks the invasion and metastasis of osteosarcoma and
lung cancer cells [16, 17].

Despite its connection with cancer, WWOX indeed
plays a critical role in neural development and neuro-
degeneration. WWOX gene has recently been determined
as a risk factor for Alzheimer’s disease [3, 18]. Null muta-
tions of WWOX/Wwox gene cause severe neural diseases
(e.g. epilepsy, microcephaly, retinal degeneration, and
ataxia), metabolic disorders (including lipid, cholesterol
and glucose metabolism), and early death in the newborns
[1, 3, 19, 20]. No spontaneous tumor growth is shown
in the newborns of humans and rats, suggesting that
WWOX primarily maintains the physiology of normal
tissues and organs. WWOX participates in the neural
development [3, 21]. WWOX deficiency leads to rapid
protein aggregation to cause neuronal damage and
death in vivo [3, 22-26]. For example, shortly after
birth for 15 days, Wwox knockout mice develop brain
protein aggregation, including TRAPPC6AA (Trafficking
protein particle complex 6A delta) [24-27], TIAF1
(TGFp1-Induced Anti-Apoptotic Factor 1) [23, 24, 28],
SH3GLB2 (SH3 Domain Containing GRB2 Like, Endo-
philin B2) [26], tau [3, 26] and amyloid P [3, 26], become
aggregated in the brains of newborn [22-28]. Loss of
WWOX probably induces conformational changes of the
aforementioned proteins leading to aggregation.

Transiently overexpressed WWOX with Tyr33 phos-
phorylation (pY33-WWOX) induces apoptosis [1, 3, 6,
29-37]. pY33-WWOX also maintains the normal phy-
siology of cells [1, 3, 6]. pY33-WWOX works together
with p53, Hyal-2 and Smad4 to induce apoptosis [21-23,
34, 35]. In response to UV and cold shock, WWOX, p53
and NOS2 (nitric oxide synthase 2) generate a novel
type of cell death, termed bubbling cell death, in
many types of cells [35-37]. When overexpressed, ectopic
Hyal-2/WWOX/Smad4 signaling complex causes bub-
bling cell death in response to high-molecular-weight
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hyaluronan of 2—4 million Daltons [35, 37]. In contrast,
hyaluronan increases the binding and signaling of p53/
WWOX/Smad4 for leading to membrane blebbing, but
without causing cell death [35, 37].

During the early stage of cancer development, WWOX
is upregulated in the hyperplasia tissues [13, 38]. Activated
pY33-WWOX is rapidly upregulated in 24 h during the
acute phase of UVB irradiation-induced skin squamous
cell carcinoma (SCC) in hairless mice [13]. pY33-WWOX
probably exerts its tumor suppressor function to limit
cancer progression. pY33-WWOX disappears in 3 months
in the UVB-treated mice as SCC continuously develops,
even though the mRNA coding for Wwox is still present.
Similarly, pY33-WWOX upregulation is observed during
breast cancer progression to a premetastatic state [38]. Es-
trogen induces the upregulation and activation of WWOX
[38]. Perhaps, upregulated pY33-WWOX can be regarded
as a marker for the very early stage of cancer progression.

We have reported the protein complex of WWOX, p53
and TIAF1 triad is a potential axis of tumor suppression
[23, 28]. Here, we examined whether the protein triad
suppresses anchorage-independent growth, blocks cell
migration, inhibits SMAD promoter activation, and causes
apoptosis. We determined the role of p53 phosphorylation
at Ser46 in contributing to the apoptotic function of the
triad. The kinetics of the triad formation was examined by
FRET (Forster resonance energy transfer) microscopy,
co-immunoprecipitation, and yeast two-hybrid analysis
[22-26, 28-32, 34—39]. Without activation, p53 cannot
bind TIAF1 [40]. Intriguingly, activated p53 binds
TIAF1 and then together with WWOX to form a stabi-
lized triad. Among p53 isoforms, A133p53y is most potent
in suppressing the migration of WWOX-negative MDA-
MB-231 cells, which correlates with its activation of SMAD
promoter. Notably, p53 may functionally antagonize with
WWOX. p53 blocks WWOX inhibition of inflammatory
immune response induced by cancer, and this leads to
protein aggregation in the brain as seen in the Alzheimer’s
disease (AD) and other neurodegeneration.

Methods

Cell lines and cell culture

Cell lines used in this study included human breast
MCF-7 and MDA-MB-231 cancer cells [38], human
prostate DU145 cells [35], human monocytic U937 cells
[35], human lung p53-deficient NCI-H1299 [35], murine
L1929 fibroblasts [29-31], monkey kidney SV40 virus-
transformed COS7 fibroblasts [31, 35], and primary
mink lung epithelial Mv1Lu cells [40, 41] (American
Type Culture Collection). Mouse embryonic fibroblast
(MEF) for Wwox wild type, heterozygous and knockout
cells were generated and maintained in RPMI-1640
medium supplemented with 10% fetal bovine serum
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[25]. All the cells were cultured at 37 °C in an incubator
with 5% CO, / atmosphere.

Chemicals, antibodies, Western blotting, immunofluorescence
microscopy, and co-immunoprecipitation

Recombinant TNFa, TGF-B1 and -2 proteins were from
PeproTech. Phalloidin for F-actin staining was from
Invitrogen. Antibodies against ERK (extracellular signal—
regulated kinase), pERK (phosphorylated ERK), BACE
(B-secretase), WWOX, p53, BECN-1 (Beclin-1), IkBa
(inhibitor of nuclear factor kappa B alpha), Foxp3
(Forkhead box P3), AIF (apoptosis inducing factor) and
GFP (green fluorescent protein) were from Santa Cruz
Biotechnology. Additional commercial antibodies used
were against: AR (AbD Serotec), APP (EMD Millipore),
NFT (neurofibrillary tangles; Invitrogen), and a-tubulin
(Sigma-Aldrich) [21-25]. Homemade antibodies against
WWOX were also used [13, 21-25]. Antibodies were used
for Western blotting analysis and immunofluorescent mi-
croscopy, as described [21-25, 29-31]. Where indicated,
binding of WWOX with TIAF1 in response to TNFa and
TGF-B1 were determined by co-immunoprecipitation
using specific antibodies, as described [29-31, 41].

cDNA constructs and electroporation

We have first isolated the murine full-length Wwox cDNA
[29]. Full-length dominant-negative Wwox construct was
mutated on Lys28 to Thr28 and Asp29 to Val29 in the
first WW domain (dnWwox) [30]. Another dominant
negative construct contained the N-terminal WW do-
mains with the same mutation (dnww) [30]. A wild type
TIAF1 [40-42] and 3 TIAF1 dominant negative con-
structs were made: TIAF1 (S6G) and TIAF (S37G) with
Ser6 mutated to glycine and Ser37 to glycine, respectively,
and TIAF1 (S68A) with Ser68 mutated to alanine. Ser37 is
a confirmed phosphorylated site [22-24]. These three
mutation sites were the predicted phosphorylation sites in
TIAF1 protein by using NetPhos 2.0 Server (Technical
University of Denmark). Other constructs used were
p53 and p53(S46G) [23, 29-31], and eight p53 iso-
forms [43-46]. p53 isoforms were kind gifts of Dr. JC
Bourdon of the University of Dundee. All of the con-
structs used were made in pEGFP-C1, pECFP-C1 and
pDsRed vectors (Clontech), respectively. Wwox siRNA
(Wwoxsi) was designed and cloned into pSuppressorNeo
vector (Imgenex) [47]. Designed primers for WWOXsi#1
and #2 siRNAs, targeting a common DNA sequence in
human/murine WWOX and another DNA sequence in
human WWOX, respectively, were made [47]. Cells were
electroporated twice with the indicated DNA constructs
(200V, 50ms) and cultured in medium containing 10%
EBS overnight prior to carrying out experiments. While
indicated, liposome-based GeneFECTOR (Venn Nova)
was used to transfect cells with the expression constructs.
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Cell migration assay, promoter activation, and time-lapse
microscopy

Cell migration assay was performed as described [24]. A
culture insert (ibidi) was placed onto a 35 mm dish, and
an equal number of cells (70pl, 4x10° cells) were
seeded into the two reservoirs of the same insert, so
there would be a 500 + 50 mm gap. After overnight incu-
bation at 37 °C/5% CO2, the insert was gently removed
and the medium was changed to serum-free, or contain
2% FBS to minimize cell proliferation. The cell migration
was imaged at an indicated time interval for 24 to 48 h
using a NIKON TE2000-U microscope [23-26]. Cell
migration was analyzed either by counting the migrating
cell numbers or by measuring the migrating cell areas.
An inverted Olympus IX81 fluorescence microscope was
used for carrying out time-lapse microscopy [34—37].
Cell migration rate was measured by cell migrating
distance versus time. Single cell moving path was
tracked using the NIH Image ] manual tracking and
chemotaxis and migration tool.

Tri-molecular FRET microscopy

The kinetics of tri-molecular protein/protein binding inter-
actions was carried out by FRET microscopy [35, 37, 39].
Experiments were designed to let the FRET energy transfer
from WWOX-ECFP to TIAF1-EGFP, and finally to p53-
DsRed. COS7 cells were transiently overexpressed with
ECFP-WWOX, EGFP-TIAF1, and DsRed-p53. In negative
controls, cells were transfected with ECFP, EGFP, and
DsRed. Following culturing overnight, cells were treated
with Prima-1 (10 uM), an activator of p53 activator, for 0O,
30 and 60 min, followed by fixing with 4% paraformal-
dehyde. Similar experiments were carried out by treating
cells with TGF-f1 (10ng/ml). FRET microscopy was
performed using an inverted fluorescence microscope
(Nikon Eclipse TE-2000 U), and data analyzed as described
[35, 37, 39]. The FRET images were corrected for back-
ground fluorescence from an area free of cells and spectral
bleed-through. The spectrally corrected FRET concen-
tration (FRETc) was calculated by Youvan’s equation
(using a software program Image-Pro 6.1, Media Cyber-
netics): FRETc = [fret — bk(fret)] — cf.(don) x [don — bk(don)]
- cf.(acc) x [acc - bk(acc)], where fret = fret image, bk =
background, cf. = correction factor, don = donor image, and
acc = acceptor image. The equation normalizes the FRET
signals to the expression levels of the fluorescent proteins.

Cytoplasm-based yeast two-hybrid analysis for protein/
protein binding interactions

To investigate whether WWOX binds TIAF1 in vivo, Ras
rescue-based yeast two-hybrid analysis (CytoTrap; Strata-
gene) was performed [29-31, 34, 35]. In brief, binding of a
cytosolic Sos-tagged bait protein to a cell membrane-
anchored target protein (tagged with a myristoylation
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signal) leads to activation of the Ras signaling pathway in
yeast. This activation allows mutant yeast cdc25H to grow
in 37°C using a selective agarose plate containing galac-
tose. Without binding, yeast cells fail to grow at 37°C.
Target constructs made in a pMyr vector (with the myris-
toylation signal) were murine TIAF1 and human p53. Bait
constructs made in a pSos vector (tagged with an N-ter-
minal Sos protein) were murine WWOX, WWOXww
(the first WW domain), WWOX(Y33R), and WWOXsdr
(the entire SDR domain). Additionally, self-binding of
MafB (in both pMyr and pSos) was regarded as a posi-
tive control, and empty pSos versus empty pMyr as a
negative control.

Cell cycle analysis

Cells were electroporated with indicated EGFP-tagged
plasmids and cultured overnight. The electroporation effi-
ciency was confirmed by fluorescence microscopy. The
condition media were then harvested, and the cells
collected by trypsin and centrifugation (4000 rpm, 10 min)
. Cells were washed once with PBS and then were fixed in
70% ethanol overnight. After overnight fixation, cells were
then washed once with PBS and stained with propidium
iodide (PI) solution (2pg/ml PI, 10 pg/ml RNase A in
PBS) for 30 min at room temperature. Cell cycle analysis
was performed by flow cytometry (BD) [23, 24, 29-31].

Cell proliferation assay

5x 10* cells per well were seeded in 12-well microtiter
plates, cultured overnight in medium containing 10% FBS,
and then trypsinized. The cell number was counted using
hemocytometer at time point 0, 6, 18, 24, and 48 h.

Soft agarose colony survival assay
Adherence-independent cell growth or transforming
growth was performed in a soft agarose colony survival
assay [40]. MDA-MB-231 or indicated cells were electropo-
rated with expression constructs of p53-DsRed, WWOX-
ECFP, and/or EGFP-TIAF1. These cells were plated at a
density of 3 x 10* cells/35-mm dish in triplicate in RPMI
1640, 10% fetal bovine serum, 0.8% agarose, and 10 mM
HEPES. Dishes were incubated in a humidified CO2 incu-
bator at 37 °C for 3 weeks. Live colonies were stained with
the MTS proliferation reagent (Promega) and counted. In
controls, cells were treated with DMEM medium or sub-
jected to electroporation with medium only.

Cancer cell growth in nude mice

p53-deficient NCI-H1299 lung cancer cells were tran-
siently overexpressed with p53-DsRed and/or WWOX-
CEP, or EGFP only using liposome-based GeneFECTOR
(Venn Nova). Nude mice received subcutaneous injections
of these cells twice on both sides of the flanks, followed by
measuring the tumor sizes daily, as described [26].
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Statistical analysis

Data were analyzed by Student’s ¢ test among controls
and tested groups using Microsoft excel. Data were
expressed as mean * standard deviation, where p < 0.05
was considered significant.

Results

Altered signaling in Wwox knockout MEF cells

Wwox gene knockout mice and wild type Wwox™'",
knockout Wwox™'~, and heterozygous Wwox*'~ mouse
embryonic fibroblasts (MEF) were established [25]. Wild
type MEF cells tightly merge with each other and appear
squamous (and roundish for dividing cells) (Fig. 1a).
Wwox knockout MEF cells appear similarly to that of the
wild type cells, and have loose intercellular connections
(Fig. 1a). Compared to the heterozygous Wwox MEF cells,
knockout cells have a significant reduction in expression
of endogenous p53, IkBa and Fas (Fig. 1b). TNF« did not
restore the protein levels during treatment of knockout
cells for 1h (Fig. 1b). Interestingly, knockout cells have a
higher expression of p63 than the heterozygous cells
(Fig. 1b). The protein levels for p53, p63 and WWOX in
the wild type cells are shown (Fig. 1c). Smad3 of the
SMAD pathway was constitutively phosphorylated (or
activated) in the knockout cells (Fig. 1d). Also, in the
knockout cells, inhibitor Smad6 was significantly down-
regulated (Fig. 1d). Smad2, 3 and 6 were responsive to
TNFa-mediated upregulation in the heterozygous cells,
but not in the knockout cells (Fig. 1d). In the MAPK path-
way, p38 is constitutively activated in the knockout cells
(Fig. 1e). TNF« induced the activation of JNKI in both
heterozygous and knockout cells (Fig. le). Together,
compared to the heterozygous cells, knockout MEF cells
exhibit many aberrant signaling pathways.

WWOX is a potent inhibitor of cell migration

Cell proliferation assay was performed to examine the
doubling time of wild type and Wwox knockout MEF
cells. Under normal culture condition (medium contain-
ing 10% FBS), the proliferation rate of wild type MEF
cells was significantly slower than the knockout MEF
cells (Fig. 2a and b). Both Wwox knockout and heterozy-
gous MEF cells migrated significantly faster than the
wild type cells (Fig. 2c and d). Wild type cells migrated
collectively, while WWOX-deficient cells migrated indi-
vidually (Fig. 2d and Additional file 1: Figure S1 for the
enlarged image; Additional file 2: Video S1 and Add-
itional file 3: Video S2).

Metastatic breast cancer MDA-MB-231 cells were used
in the cell migration assay. MDA-MB-231 is a triple nega-
tive breast cancer cell line, which lacks the expression of
estrogen receptor (ER), progesterone receptor (PR) and
HER-2, and has a very low level of WWOX due to
promoter hypermethylation. MDA-MB-231 cells migrate
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Fig. 1 Altered signaling in Wivox knockout MEF cells. a Wild type MEF Wivox™ ™" cells tightly merge with each other and appear squamous.
Dividing cells at metaphase are roundish. Similar observations were shown for heterozygous Wwox™~ MEF cells. Knockout Wwox™~ MEF cells
exhibit loose cell-cell contacts. b, ¢ Wiwox MEF cells were treated with TNFa for 1 h. Protein expression in the TNF pathway is shown. d Under
similar conditions, protein expression in the SMAD pathway is shown. Smad3 is constitutively phosphorylated or activated in the knockout
cells. e Expression of proteins in the MAPK pathway is shown. P38 is constitutively activated

individually. In contrast, ER" and WWOX" breast
MCEF-7 cells migrate collectively. Transiently over-
expressed WWOX suppressed the migration of MDA-
MB-231 cells, whereas inhibition of WWOX by dominant
negatives (K28 T/D29V mutation in the full length
WWOX or WW domains only) [30, 31], or by small inter-
fering RNA (WWOXsi) [47], significantly enhanced the
cell migration (Fig. 2d and e). Similarly, we examined the
migration of WWOX-negative MDA-MB-435s and
WWOX-positive 1.929 (or L929s) fibroblasts and breast
MCEF?7 cancer cells. Without WWOX, cells migrated faster
than those of WWOX positive cells (Additional file 1:
Figure S2). WWOX appears to be functionally deficient in
MCEF?7 cells, as these cells effectively migrated similarly to
the WWOX-negative MDA-MB-435 s and MDA-MB-231
cells (Additional file 1: Figure S2). L929 s cells are sensitive
to tumor necrosis factor (TNF)-mediated apoptosis [29].

TGF-B1 enhances migration of Wwox** MEF cells but
suppresses that of Wwox™"~ MEF cells

Transforming growth factor-p1 (TGF-B1) has both tumor
suppressive and tumor promoting functions [48]. In the
early stage of tumor progression, TGF-$ acts as a tumor
suppressor by inducing apoptosis and inhibiting tumor
cell growth, due in part to its activation of the proapopto-
tic WWOX and Smad4 [33, 34]. In the late stage,
metastatic tumor cells have altered TGF-B receptors or
Smads in the TGE-p pathway, thereby resulting in TGF-f3-
mediated cancer growth. TGF-f induces WWOX acti-
vation via Tyr33 phosphorylation and nuclear transloca-
tion to suppress cancer growth, and that loss of WWOX
is found in a majority of metastatic cancer cells [6, 34].

Here, we investigated whether TGF-f affects the cell
migration of wild type and Wwox knockout MEF cells.
TGF-B1 marginally promoted the wild type MEF cell
migration (Fig. 2g). However, TGF-B1 suppressed Wwox
knockout MEF cells migration (Fig. 2h). At 10 ng/ml,
TGEF-B1 significantly enhanced the migration of wild
type cells, but not Wwox knockout cells (Fig. 2g, h).
TGEF-B2 was more effective in suppressing the migration
of Wwox knockout cells than TGF-f1 (Fig. 2i and
Additional file 1: Figure S3). TFG-P1 had no significant
effect on the cell proliferation in both wild type and the
Wwox knockout MEF cells (Additional file 1: Figure S4).

The TIAF1/WWOX/p53 axis inhibits cell migration
We have reported the presence of the TGF-B-responsive
TIAF1/WWOX/p53 complex as a molecular triad in
tumor suppression [23, 40—42]. Suppression of TIAF1 by
siRNA enhances cancer cell growth and abolishes
WWOX-mediated apoptosis [23]. Similarly, p53-mediated
apoptosis is blocked by siRNA targeting TIAF1 or WWOX
[23]. p53 plays an inhibitory role in cell motility. p53 blocks
epithelial-mesenchymal transition (EMT) and cell migra-
tion to prevent metastasis [48, 49]. Loss of p53 expression
in MEF cells leads to amoeboid-like movement and
increased invasive ability [50, 51]. WWOX physically binds
p53 [23, 29-31], whereas p53 does not bind TIAF1 [42],
suggesting that WWOX is a bridge for the formation of
the TIAF1/WWOX/p53 triad to exert tumor suppression.
TIAF1 binds and retains Smad2/3/4 in the cytoplasm and
blocks Smad-mediated transcriptional activation [23].

To determine whether the protein triad controls cell
migration, human breast MDA-MB-231 and MCE-7 cells
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and Additional file 3: Video S2). e, f Breast MDA-MB-231 cancer cells were transfected with the indicated constructs by electroporation. Transiently

manner (n =3, Student’s t test). i.

overexpressed WWOX suppressed cell migration, whereas dnWWOX and WWOX siRNA constructs enhanced the migration. Dn: dominant negative;
WWOXww: WW domain of WWOX; Scram: scramble control; WWOXsi#1 and #2: siRNAs targeting human/murine WWOX (n = 3, Student's t test) [47].
g, h During treatment for 48 h, TGF-31 promoted wild type cell migration, but suppressed Wwox knockout cell migration in a dose-dependent

Both TGF-B1 and TGF-32 promoted wild type MEF cell migration during treatment for 48 h. TGF-32 is more effective
in suppressing Wiwvox knockout cell migration than TGF-31 (n = 3, Student’s t test)

were transiently overexpressed with the cDNA expression
constructs for WWOX, TIAF1, and/or p53. Protein
expression was examined by a fluorescent microscope.
More than 60% of cells were positive for protein ex-
pression. Ectopic WWOX, TIAF1, and p53 significantly
suppressed the migration of WWOX-deficient MDA-MB-
231 and WWOX-positive MCF-7 cells (Fig. 3a and b). A
similar extent of migration inhibition was observed by
using pairs of expression constructs, including WWOX/
p53, WWOX/TIAF1, and TIAF1/p53 (Fig. 3a and b). This
is in agreement with our previous observation that ectopic
TIAF1/WWOX/p53 triad suppresses the migration of
1929 cells [23]. TGF-B, TNF-a, apoptotic stress, or protein
overexpression causes TIAF1 undergoes self-aggregation
and the aggregates retain Smad proteins to prevent
nuclear translocation [22, 23, 28]. Transiently over-
expressed TIAF1 underwent aggregation and recruited
p53 and WWOX in the aggregates in the cytoplasm

(see punctate; Fig. 3c and S5 for enlarged image and
additional data), suggesting a likely mechanism for
migration inhibition.

p53 is more potent than WWOX in suppressing
anchorage-independent cell growth

In addition, WWOX, TIAF1 and p53, together or in various
combinations, inhibited anchorage-independent growth (or
transforming growth) of MDA-MB-231 cells, as determined
by soft agarose assay (Fig. 3d and e). Compared to p53
and TIAF1, WWOX was much less effective or ineffec-
tive in inhibiting the colony formation. Similarly, by
using L929 cells, p53 is more potent than WWOX in
blocking anchorage-independent growth of L929 cells
(Additional file 1: Figure S6). p53AS46 has a reduced
apoptotic activity and fails to bind WWOX [31],
whereas it was potent in blocking the colony for-
mation (Additional file 1: Figure S6). We have previously
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reported that TIAF1 and p53 are equally potent in sup-
pressing anchorage-independent growth of L929 cells [40].
To further confirm the expression of ectopic proteins,
COS7 cells were introduced with GFP-tagged WWOX,
TIAF1, and p53, respectively, or in combinations
(Fig. 3f). The GFP antibody probed the GFP-tagged pro-
teins, and showed the ectopic protein expressions in
COS7 cells. Compared with WWOX expression alone,
co-expression of ectopic EGFP-tagged WWOX, TIAF1
and/or p53 upregulated the endogenous WWOX protein
expression. Similarly, endogenous p53 was upregulated
by ectopic expression of EGFP-tagged p53, WWOX,
and/or TIAF1 (Fig. 3f). The reason for using COS7 cells
is that this cell line is easy to transfect and ectopic pro-
teins can be readily overexpressed in the cells [29-31].

Ectopic A133p53y activates SMAD promoter, which
correlates with suppression of cancer cell migration
Next, we investigated whether p53 and isoforms control
cell migration. p53 has at least 12 isoforms [43—46].
Abnormal expression of p53 isoforms has been reported
in several human cancers, such as head and neck cancer

and ovarian tumors [42—45], indicating that p53 isoforms
participate in tumor progression. MDA-MB-231 cells
were transfected with wild type p53 and isoform cDNA
expression constructs by electroporation (Fig. 4a). The
results showed that many p53 isoforms decreased MDA-
MB-231cell migration, and that A133p53y was most
effective (Fig. 4b). We have determined that when cells
undergo over-activation of the SMAD promoter, apoptosis
occurs [34]. Ectopic A133p53y caused the SMAD pro-
moter activation (Fig. 4c and d). In contrast, wild type 53
and A133p53 had no effect. TIAF1 binds Smad4 and
blocks the SMAD responsive element from activation
[23]. Knockdown of TIAF1 by siRNA did not increase
A133p53y-mediated SMAD promoter activation (Fig. 4c
and d). Together, the observations suggest that ectopic
A133p53y activates the SMAD promoter that leads to the
restriction of cell migration (Fig. 4e).

The WWOX/TIAF1/p53 triad induces apoptosis in cancer
cells

Next, we investigated whether the overexpressed WWOX/
TIAF1/p53 triad limits cell migration is due, in part, to
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induced apoptosis. In agreement with our previous obser-
vations [23], ectopic expression of the triad proteins in-
duced apoptosis of 1929 cells (Fig. 5a). Similar results were
observed using other types of cells such as breast MDA-
MB-231, COS7 fibroblasts, and lung NCI-H1299 cells. We
have shown that pY33-WWOX physically binds pS46-p53,
and the complex induces apoptosis [31]. More than 50% of
cancer cells have p53 mutations and Ser46 is one of them
[31, 43]. p53(S46G), which has an alteration of Ser46 to
Gly, blocked the WWOX/TIAF1 complex-mediated apop-
tosis of L929 cells (see the last two columns to the right;
Fig. 5a). However, p53(S46G) could not significantly sup-
press apoptosis induced by WWOX or TIAF1 alone
(Fig. 5a). p53(S46G) does not bind WWOX [31].

TIAF1 binds the first N-terminal WW domain of WWOX
We investigated how WWOX binds TIAF1. By Ras
rescue-based Cytotrap yeast two-hybrid analysis [27, 29,

30, 34, 35, 38, 39], we determined the binding of TIAFI to
the N-terminal first WW domain of WWOX, as revealed
by mutant yeast growth at 37 °C using a selective medium
in agarose plates (Fig. 5b). When the conserved phospho-
rylation site Tyr33 is altered to Arg, WWOX(Y33R) could
not bind TIAF1, suggesting that Tyr33 phosphorylation is
involved. Also, the SDR domain of WWOX did not bind
TIAF1. MafB self-association and WWOX/p53 binding
showed the positive binding interactions (Fig. 5b). Empty
vector pSos and empty vector pMyr did not yield in
positive binding (Fig. 5b).

To further validate the TIAF1/WWOX binding,
L1929 cells were stimulated with TNFa for 30 min.
TNFa rapidly increased TIAF1 protein expression
(Fig. 5¢). Binding of TIAF1 with WWOX was observed by
co-immunoprecipitation. Also, endogenous TIAF1 binds
Tyr33-phosphorylated WWOX (pY33-WWOX) in breast
MCEF7 cells, and that TGF-p1 had little or no effect on the
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rescue-based yeast two-hybrid analysis revealed the binding of TIAF1 to the N-terminal first WW domain of WWOX, as shown by the growth of
yeast at 37 °C [29-31]. WWOX(Y33R) mutant abolished the binding. The SDR domain failed to bind TIAF1. In positive binding controls, MafB self-
association and WWOX/p53 binding are shown, and empty pSos versus empty pMyr as negative controls. cONAs constructed in the pSos are
shown in the left, and pMyr in the right. ¢ TNFa, at 100 ng/m, rapidly upregulated the expression of TIAFT in 30 min in L929 cells. Co-immunoprecipitation
showed the binding of TIAFT with WWOX. d By co-immunoprecipitation, TGF-31 (5 ng/ml) had little or no effect on the binding of TIAFT with pY-WWOX
during treatment for 30 min in MCF7 cells. IgH: IgG heavy chain. e, f NCI-H1299 cells were transiently transfected with p53-DsRed, TIAF1-EGFP,
and WWOX-ECFP. By 3-protein FRET analysis [37, 39], Prima-1 induced p53 activation-dependent binding with WWOX and TIAF1 with time
(see the number in red under FRETc columns, e Experiments were designed to let the FRET energy transfer from WWOX-ECFP to TIAF1-EGFP,
and finally to p53-DsRed [37, 39]. Prima-1 increased the triad complex formation in COS7 cells (f). g In Mv1Lu cells, TGF-31 rapidly increased
the triad complex formation in 1 h, followed by reduction (n =6; Student's t test; experiments versus time 0 controls). h Prima-1 increased the
binding of the first WW domain of WWOX with TIAF1 and p53 with time. Each bar represents an average of two experiments in (f) and (h)

binding during treatment for 30 min. (Fig. 5d). This data
supports the observation from yeast two-hybrid analysis
that pY33-WWOX binds TIAFI.

Activated p53 binds TIAF1, and WWOX strengthens the
p53/TIAF1 complex to stabilize the triad

Under physiologic conditions, TIAF1 does not bind
p53 [40]. However, under stress conditions, both p53
and WWOX are activated. pS46-p53 physically binds

pY33-WWOX and the complex translocates to the mito-
chondria or nucleus to induce apoptosis [29-31]. Here,
p53-deficient NCI-H1299 cells were transiently trans-
fected with p53-DsRed, TIAF1-EGFP, and WWOX-ECEFP.
Twenty-four hour later the cells were treated with
Prima-1 for activating p53 [52]. By tri-molecular bind-
ing FRET analysis [37, 39], we measured the signal flow or
the binding energy flow from WWOX-ECFP to TIAF1-
EGFP and then to p53-DsRed [37]. Prima-1 increased the
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binding of p53 with TIAF1 and WWOX in a time-related
manner (Fig. 5e; see the number in red under FRETc
columns). Interestingly, the binding strength of the
whole triad was stronger than that of the activated
p53/TIAF1 complex. Similar results were observed by
using p53-positive COS7 cells transfected with the
aforementioned constructs and treated with Prima-1
(Fig. 5f). Similarly, TGF-B1 rapidly induced the triad
complex formation in 1h, followed by reduction in
epithelial MvlLu cells (Fig. 5g). The MvlLu cell is
sensitive to TGF-B-mediated growth suppression [53].
The binding strength of p53 and TIAF1 was relatively
weak, compared to the overall protein binding strength in
the triad.

Next, COS7 cells were transiently transfected with
the first WW domain of WWOX (WWOXww),
along with TIAF1 and p53. Again, Prima-1 induced
the triad formation with time (Fig. 5h). Interestingly,
the p53/TIAF1 complex had a greater binding
strength than that of the overall binding strength in
the triad complex. The observations suggest that
activated p53 binds TIAF1, and WWOX joins the
complex via its C-terminal SDR domain to stabilize
the complex triad.

p53 and TIAF1 block WWOX and Smad4-induced SMAD
promoter activation

Suppressing one of the proteins in the triad abolished its
tumor suppressor function [23] (Figs. 4 and 6), sugges-
ting a concerted teamwork among p53, WWOX and
TIAF1 is needed for cancer suppression. In light of the
dynamic binding among the triad proteins (Fig. 5), we
examined the potential functional antagonism among
the triad proteins. p53-deficient lung cancer NCI-H1299
cells were transiently overexpressed with TIAF1-ECFP,
p53-DsRed, and/or WWOX-ECFP, in the presence of
the SMAD promoter construct. We determined that
WWOX induced the SMAD promoter activation, and
that p53 and/or TIAF1 abolished the activation
(Fig. 6a). In a positive control, Smad4 induced the pro-
moter activation (Fig. 6a; see left panel). Under similar
conditions, p53 blocked WWOX-induced SMAD pro-
moter activation in L929 cells (Fig. 6b). Furthermore,
ectopic Smad4-mediated SMAD promoter activation
was abolished by TIAF1 (Fig. 6¢), which is in agreement
with our previous report [23]. p53 and p53AS46
induced Smad4-dependent SMAD promoter acti-
vation (Fig. 6¢). TIAF1 and p53 (or p53AS46)
blocked Smad4-mediated SMAD promoter activation,
and p53AS46 less effective (Fig. 6c). The entire
molecular event is summarized (Fig. 6d). Together,
our data showed that p53 and TIAF1 may functionally
interrupt with WWOX in affecting SMAD-dependent
promoter activation.
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WWOX suppresses cancer inflammation-mediated spleen
enlargement and p53 abolishes the event, and the p53/
WWOX antagonism-induced inflammation leading to
brain protein aggregation

NCI-H1299 cells were transiently overexpressed with
DsRed-p53 and/or EGFP-WWOX, or EGFP only
(Fig. 7a), followed by inoculating the cells in subcutane-
ous sites of both flanks in nude mice. WWOX-NCI-
H1299 cells had a suppressed growth in vivo. However,
p53 abolished the growth suppression (Fig. 7a). Mice
were sacrificed on day 86. Spleen enlargement was
shown in mice inoculated with cells-expressing EGFP,
DsRed-p53, or EGFP-WWOX/DsRed-p53 (Fig. 7b), sug-
gesting that cancer-induced inflammation occurred. In
contrast, WWOX blocked cancer cell-induced inflam-
mation, so that the spleen size was the smallest (Fig. 7b).
Notably, protein aggregates, including pERK, BACE,
APP, AP, and NFT, were found in the brain of mice inoc-
ulated with p53/WWOX-expressing cells (Fig. 7c). Gels
were run under both reducing and non-reducing condi-
tions. These proteins are associated with neurodegenera-
tion such as Alzheimer’s disease [22, 24-26].
Housekeeping protein a-tubulin was also aggregated.
Additional proteins became aggregated were AIF and
neurofilament middle and high molecular weights (NF-
M/H) (Fig. 7c). We have recently reported the occur-
rence of neurodegeneration during the progression of
melanoma in mice [26]. No protein aggregates were
found in the mice inoculated with cells expressing EGFP,
DsRed-p53, or EGFP-WWOX alone (Fig. 7c). APP was
shown to be degraded. Similarly, upregulated BACE,
APP degradation, and AP formation were also observed
in the mouse lung (Fig. 7d). Aggregated BACE, APP, Af,
BECN-1 and aSynuclein were shown in the lung.

Discussion

In agreement with our recent report [54], WWOX-
deficient cancer cells and Wwox gene knockout MEF
cells have loose intercellular contacts and they migrate
individually. Also, their migration speed is much faster
than that of the wild type cells. This accounts for the ag-
gressive behavior of metastatic cancer cells [14]. The
JAK2/STAT3 axis has been implicated in the enhanced
breast cancer cell metastasis [14]. In parallel, a recent
study showed that WWOX restricts the migration of
triple negative breast cancer cells via regulating the
expression of miR-146a [55]. We showed that aberrant
signal pathways occur in the Wwox knockout MEF cells.
These cells possess constitutive activation of Smad3 and
p38, along with significant downregulation of p53, IkBa,
Smad6 and Fas. Whether these events contribute to
enhanced cell proliferation of Wwox knockout MEF cells
remains to be established. Indeed, the knockout cells
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tend to undergo apoptosis post rapid proliferation (data
not shown).

The wild type cells have strong cell-cell contacts and
migrate collectively. WWOX undergoes Tyr33 phos-
phorylation and nuclear translocation upon stimulating
cells with TGF-B [34]. TGF-B accelerates the collective
migration of wild type MEF cells. Also, there is an
increased cell number migrating individually, supporting

the role of TGF-P in promoting cancer cell migration
and metastasis [34, 48]. By co-culturing the wild type
and Wwox knockout MEF cells, the knockout cells
always undergo retrograde migration upon facing the
wild type cells [54]. Multiple signal pathways, inclu-
ding MIF, Hyal-2, Eph, and Wnt pathways that converge
to ERK signaling is responsible for the retrograde
migration [54].
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We continued to show that the p53/TIAF1/WWOX
axis is a protein triad for cancer suppression, including in-
hibition of cell migration, adherence-independent growth,
and SMAD promoter activation, and induction of cancer
cell apoptosis [23]. p53, TIAF1 and WWOX act in a con-
certed manner to inhibit cancer cell growth, migration
and apoptosis in vitro. Missing a component in the p53/
TIAF1/WWOX triad reduces its cancer inhibitory func-
tion. WWOX, via its first N-terminal WW domain, phys-
ically binds p53 and TIAF1, suggesting that p53 and
TIAF1 competitively bind WWOX. Under apoptotic
stress, pY33-WWOX binds pS46-p53 to carry out apop-
tosis [31]. Binding of TIAF1 with WWOX depends upon
phosphorylation of WWOX at Tyr33. TIAF1 undergoes
phosphorylation Ser37 [22, 23, 28]. Whether pS37-TIAF1
binds pY33-WWOX is unknown. Like p53 and WWOX,
TIAF1 is significantly downregulated or could be altered
in many types of cancer cells [23, 28, 56].

Under physiologic conditions, the binding strength for
p53, WWOX and TIAF1 is weak. p53 fails to bind
TIAF1 [53]. Intriguingly, Prima-1 activates p53, and this

leads to the p53/TIAF1 complex formation. WWOX ap-
pears to further enhances the binding with p53/TIAF1
to increase the stability of the triad. The SDR domain of
WWOX is probably involved in the triad stabilization.
Whether TIAF1 is Ser37 phosphorylated in the triad re-
mains to be determined. Both TNFa and TGE-f1 rapidly
increase the triad formation, further supporting the
observations that the p53/TIAF1/WWOX triad partici-
pates in cancer growth suppression, migration inhibition,
and apoptosis. Quite frequently, when two proteins bind
reaching a maximal strength, the protein complex
further drives to polymerization and leads to aggregation
for causing apoptosis [22-24, 28]. Thus, rapid triad
formation of p53, TIAF1 and WWOX is important for
cancer suppression and causing cancer cell death.
A133p53y isoform strongly suppresses cancer cell migra-
tion, and this positively correlates with its-mediated
SMAD promoter activation. We do not exclude the
possibility that A133p53y undergoes self-association and
this provides a driving energy to cause SMAD promoter
activation and inhibition of cell migration. The molecular
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nature of the A133p53y isoform in cancer cells remains to
be established.

p53 and WWOX are known to induce apoptosis in a
synergistic manner [29-31]. We demonstrated for the first
time that there is a functional antagonism between these
two tumor suppressors. For example, p53 blocks WWOX-
induced SMAD promoter activation. Notably, WWOX-
overexpressing NCI-H1299 cells do not elicit inflammatory
immune response. However, p53 abolishes the function of
WWOX in causing cancer-mediated inflammation. This
functional antagonism correlates with the increased tumor
growth and neurodegeneration in vivo, as shown by
growing p53/WWOX-expressing NCI-H1299 cells in nude
mice. WWOX inhibition of NCI-H1299 tumor growth is
blocked by p53. For unknown reasons, the growing tumors
induce protein aggregation in the mouse brain and lung.
We believe that cytokines released by growing cancer cells
induce protein aggregation. These aggregated proteins
include pERK, BACE, a-tubulin, NFT, APP and AP, in
which BACE upregulation, APP degradation, and A
formation occur in the brain. BACE is responsible for
cleaving APP that allows formation of AP} formation and
plaque generation. The observations indicate there is an
ongoing neurodegeneration in the brain of tumor-growing
mice. We have recently shown that growing melanoma or
glioblastoma in mice leads to neurodegeneration [26].
Downregulation of WWOX in the brain may lead to a cas-
cade of protein aggregation, starting from TRAPPC6AA,
TIAF1, and SH3GLB2, which results in APP degradation,
and aggregation of amyloid  and tau [3, 23-26]. How the
tumor cells in the flanks control neurodegeneration in the
brain is unknown and remains to be established.

TIAF1 is a potential tumor suppressor. We demon-
strated the anticancer function of TIAF1 by showing its
critical role in cell death. TIAF1 rapid interaction with
WWOX is essential in executing cell death. TIAF1 is
upregulated in growing tumors, but may disappear in
established metastatic cancer cells [23, 28]. TIAF1 protein
aggregation has been shown in the human cortex and
hippocampus of nondemented mid-aged humans and
demented old patients [22, 24-26]. TIAF1 aggregates,
together with Smad4 and Ap, are found in the cancer
stroma and peritumor capsules of many solid tumors [23].
Presence of TIAF1/AP aggregates is shown on the inter-
face between brain neural cells and the metastatic cancer
cell mass. The TIAF1/Ap aggregates is toxic to neural cells
but not cancer cells. Also, TIAF1 and amyloid fibrils are
significantly accumulated in the stroma of progressing
lung cancer cells [23]. These peritumor materials probably
provide support for cancer cell survival.

TIAF1 undergoes self-association, which leads to
increased expression of Smad4 and WWOX [23]. WWOX
in turn increases the TIAF1 expression. Binding of TIAF1
with Smad4 induces AP formation [23]. TIAF1 suppresses
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Fig. 8 Summary illustration. Three scenarios account for cancer
growth or suppression: 1) loss of WWOX, p53 and TIAF1 increases
cancer growth and metastasis; 2) stabilized p53/WWOX/TIAF1 triad
suppresses cancer growth, inhibits metastasis, and induces
apoptosis; 3) functional antagonism between p53 and WWOX allows
cancer cell growth and yet induces inflammation for causing neural
protein aggregation as seen in the Alzheimer's disease

SMAD-regulated promoter activation. Notably, in the
absence of p53, self-aggregating TIAF1 spontaneously
activated the SMAD-regulated promoter. pS15-p53 re-
quires the presence of TIAF1 to undergo nuclear trans-
location [40]. Together, our previous and current findings
imply that Smad4 and p53 restrict TIAF1 self-aggregation,
and that loss of tumor suppressors p53, WWOX, and
Smad4 results in TIAF1 aggregate formation, which
supports cancer growth and causes neurodegeneration.

Conclusions

In conclusion, we have provided strong evidence for the
binding interactions among WWOX, TIAF1 and p53, and
the firmly established WWOX/TIAF1/p53 protein triad
exerts strong cancer suppression by blocking cancer cell
migration, anchorage-independent growth and SMAD
promoter activation, and inducing apoptosis (see Sum-
mary illustration, Fig. 8). Yet, p53 may functionally
antagonize with WWOX. p53 blocks WWOX inhibition
of inflammatory immune response induced by cancer, and
this leads to protein aggregation in the brain as seen in
the Alzheimer’s disease and other neurodegeneration.
pS14-WWOX is known to be associated with the severe
progression of cancer and neurodegeneration [1, 26].
Upregulation of pS14-WWOX in the lesions of cancer
and neurodegeneration correlates with downregulation of
pY33-WWOX. Apparently, pS14-WWOX favors inflam-
matory response for disease progression. Whether p53
binds pS14-WWOX to promote diseases is unknown.

Additional files

Additional file 1: Figure S1. Wild type MEF cells migrate collectively,
whereas Wwox knockout MEF cells migrate individually. Shown is the
imaging of cell migration at 0 and 48 h by time-lapse microscopy. Also,
see Additional file 2: Video S1 and Additional file 3: Video S2. The image
is digitally enlarged from Fig. 2d. Figure S2. WWOX-deficient cells have a
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faster migration rate. WWOX-deficient MDA-MB43 5 s and MDA-MB-231
migrated faster than WWOX-positive L929 s cells. WWOX appears to be
functionally deficient in MCF7 cells, as these cells migrated effectively
compared to the WWOXnegative cells. This data links to Fig. 2. Figure S3.
TGF-B1 suppresses the migration of Wwox knockout cells. MEF cells were
treated with TGF-31 or TGF-B2 (10 ng/ml) for 48 h. Both TGF-31 and TGF-32
promoted wild type cell migration. TGF-32 is more effective in suppressing
the knockout cell migration than TGF-B1. This data links to Fig. 2i.
Figure S4. TGF-B1 does not affect the proliferation of Wwox MEF
cells. TGF-B1 had no significant effect on the cell proliferation of both
wild type and the Wwox knockout MEF cells (n = 3, Student's t test). This
data links to Fig. 2. Figure S5. Colocalization of transiently overexpressed
TIAF1 with p53 and WWOX proteins. MDA-MB-231 cells were transiently
overexpressed with p53-DsRed, TIAF1-EGFP and WWOX-ECFP. TIAF1
underwent polymerization and retained p53 and WWOX in the cytoplasm
(see punctate). The image data is enlarged from Fig. 3c. Figure S6. p53 is
more potent than WWOX in blocking anchorage-independent cell growth.
1929 cells were transfected with the following cDNA expression constructs
for the anchorage-independent growth assay: 1) p53, 2) WWOX (OXFL), 3)
p53AS46 (p53A46), 4) p5S3/WWOX, and 5) p53AS46/WWOX. Data is shown
as an average of duplicate experiments. This data supports Fig. 3d and e.
(PDF 8481 kb)

Additional file 2: Video S1. Migration of wild type Wwox™* MEF cells
as determined by time-lapse microscopy. Wild type Wwox™* MEF cells
were cultured in the right and left chambers of a culture-insert (ibidi) for
24 h. Following removal of the culture-insert, cells were allowed to migrate
to each other from both sides. Time-lapse microscopy was performed at
37 °C with 5% CO2. (MP4 2361 kb)

Additional file 3: Video S2. Migration of knockout Wwox™~ MEF cells
as determined by time-lapse microscopy. Knockout Wiwox ~~MEF cells
were cultured in the right and left chambers of a culture-insert (ibidi) for
24 h. Following removal of the culture-insert, cells were allowed to migrate
to each other from both sides. Time-lapse microscopy was performed at
37 °C with 5% CO2. (MP4 3411 kb)
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