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Abstract

Osteoarthritis (OA) is the most common joint disease worldwide and a leading cause of disability. Characterized by
degradation of articular cartilage, synovial inflammation, and changes in periarticular and subchondral bone, OA can
negatively impact an individual’s physical and mental well-being. Recent studies have reported several critical signaling
pathways as key regulators and activators of cellular and molecular processes during OA development. Wnt signaling is
one such pathway whose signaling molecules and regulators were shown to be abnormally activated or suppressed.
As such, agonists and antagonists of those molecules are potential candidates for OA treatment. Notably, a recent
phase | clinical trial (NCT02095548) demonstrated the potential of SM04690, a small-molecule inhibitor of the Wnt
signaling pathway, as a disease-modifying oseoarthritis drug (DMOAD). This review summarizes the role and
mechanism of Wnt signaling and related molecules in regulating OA progression, with a view to accelerating the
translation of such evidence into the development of strategies for OA treatment, particularly with respect to potential
applications of molecules targeting the Wnt signaling pathway.
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Background

Osteoarthritis (OA) is a degenerative joint disease typically
characterized by articular cartilage degeneration, abnor-
mal bone remodeling with osteophyte formation and
subchondral bone sclerosis, and fibrosis and hyperplasia
of the synovial membrane [1]. Globally, the World Health
Organization estimates that approximately 10% of men
and 18% of women aged > 60 years have symptomatic OA,
80% of which suffer from movement limitations [2].
Although various risk factors such as age, obesity, joint
trauma, altered biomechanics, and developmental diseases
have been recognized, the precise pathogenesis of OA
remains unknown. Indeed, a lack of effective treatment
strategies for this common chronic condition highlight
the fact that the pathological mechanism of OA is far from
fully elucidated. During the past few years, treatments and
methods for delaying or preventing articular cartilage
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degeneration have emerged from a greater understanding
of the pathogenesis of OA. Accumulating evidence, which
has mainly focused on interactions between signaling
pathways involved in OA, indicates an important role for
Wnt signaling in OA pathogenesis. Therefore, the Wnt
signaling pathway is considered a potential target for OA
treatment.

Wnt is an extracellularly secreted glycoprotein whose
signaling involves 19 Wnt genes and various Wnt receptors
that regulate canonical (-catenin-dependent and non-ca-
nonical [B-catenin-independent signaling pathways. Both
downstream pathways are associated with numerous
biological processes such as cell proliferation, differ-
entiation, polarization, and fate determination during
embryogenesis and late stages of development [3]; as
well as the occurrence and development of some
diseases — such as increasing evidence for their
pathologic role in OA.

Canonical Wnt signaling pathway

With regard to the canonical 3-catenin-dependent Wnt
signaling pathway, in the absence of Wnt proteins, p-ca-
tenin is degraded n the cytoplasm by the enzyme glyco-
gen synthase kinase 3B (GSK3p) in a “destruction
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complex” that includes Axinl/Axin2, adenomatous
polyposis coli (APC), Dishevelled (Dvl), and casein
kinase 1(CK1) in a phosphorylation-dependent manner
[4, 5]. However, upon binding of the Wnt signaling mol-
ecule to its specific cell membrane receptor, activation
of the protein Frizzled (Fzd) and helper receptor low-
density lipoprotein receptor-associated protein (LRP5/6)
leads to functional signaling. Subsequent activation of
Dvl results in dissociation of the multiprotein complex,
leading to inactivation of GSK3p. Finally, accumulated
B-catenin in the cytoplasm translocates to the nucleus,
whereby it interacts with lymphoid enhancer binding
factors (LEF) and T-cell factors (TCF) to elicit transcrip-
tional activation of target genes [6].

Cartilage

Protein levels of Wnt3a and B-catenin were increased, and
collagen II was reduced in rat models of normal exercise-
induced OA and injured exercise-induced OA groups [7].
Further study demonstrated that activation of B-catenin
signaling in specific chondrocytes of adult mice resulted
in the development of an OA-like phenotype [8]. Subse-
quently, transgenic mice with conditional activation of -
catenin signaling in Col2al- or Agcl-expressing cells were
shown to exhibit severe cartilage degeneration, subchon-
dral bone erosion, and osteophyte formation [9]. Similarly,
excessive WNT activation following loss of function of the
WNT inhibitor Frizzled-related protein FRZB (also called
secreted Frizzled-related protein 3, sFRP-3) resulted in
increased susceptibility to OA in both humans [10] and
mice [11]. In contrast, inhibition of B-catenin signaling in
articular chondrocytes resulted in articular cartilage
destruction [12], and excessive WNT suppression due to
tumor necrosis factor (TNF)-dependent expression of
DKK1 in inflammatory arthritis resulted in cartilage and
bone destruction [13, 14]. Wntl6-deficient mice devel-
oped more severe osteoarthritis with increased chondro-
cyte apoptosis and reduced expression of lubricin [15], a
chondroprotective agent that protects chondrocyte against
mechanical damage.

In view of previous studies, moderate WNT activity is
essential for chondrocyte proliferation and maintenance
of their typical characteristics [16]. However, excessive
activity increases chondrocyte hypertrophy and expres-
sion of cartilage-degrading matrix metalloproteinases
(MMPs) [17], while excessive suppression of Wnt in
normal chondrocytes drives OA phenotypes. These find-
ings suggest that a delicate balance of WNT activity is
needed for cartilage homeostasis, as both repression and
constitutive activation of the -catenin pathway leads to
cartilage breakdown. Additionally, activity of certain
mediators and downstream effectors of Wnt/p-catenin
signaling are altered in OA.
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Wntl-inducible-signaling pathway protein 1 (WISP1),
which positively controls canonical Wnt signaling and
aggravates OA pathology [18], is a feature of both experi-
mental and human OA that induces several MMPs,
including MMP-3 and MMP-13, as well as the aggreca-
nases ADAMTS-4 and ADAMTS-5, and is capable of
inducing articular cartilage damage in models of OA [17].

Wnt inhibitory factor 1 (Wif-1) blocks Wnt3a-
dependent activation of the canonical Wnt signaling
pathway in chondrogenic cells [19]. Moreover, WIF-1
expression levels in articular cartilage may be nega-
tively associated with progressive joint damage in pa-
tients with OA of the knee [20]. Weng et al
demonstrated an association between upregulated
Dickkopf 1 (Dkkl) expression in cartilage and in-
creased OA development, such that intraperitoneal
administration of Dkkl antisense oligonucleotides
ameliorated chondrocyte apoptosis and cartilage de-
struction [21, 22]. Knockout of FrzB, an extracellular
antagonist of Wnt signaling, led to enhanced expression
of MMPs and accumulation of B-catenin in interleukin 1
(IL-1p)-stimulated chondrocytes, thereby promoting OA
development [23]. In addition, catabolic activity in
chondrocytes was enhanced by overactivation of the Wnt/
B-catenin pathway by sclerostin (SOST) deficiency in
several in vitro studies [24—26].

Fibulin-4, an extracellular matrix (ECM) protein
reported to be abnormally elevated in human OA chon-
drocytes [27], augmented the expression of [B-catenin
and Wnt3a, and diminished GSK3p activation. However,
Dkk1 abolished the effect of fibulin-4 on chondrocyte
differentiation, suggesting that fibulin-4 activates Wnt/p-
catenin signaling and attenuates the expression of ECM
[Col2al, Coll0al, and aggrecan (ACAN)] production
and chondrocyte differentiation (Sox6, Sox9, and Runx2)
by suppresses the Wnt inhibitor DKK1 [27].

Synovium

Various members of the Wnt signaling pathway are
overexpressed in the synovium during experimental OA
[28]. Indeed, increased Wnt signaling (WNT8A and
WNT16) in the synovium may potently induce the
progression of OA via increased production of MMPs,
which are the major protein involved in cartilage
destruction [29].

Subchondral bone

Abnormal remodeling of subchondral bone and osteo-
phyte formation are hallmarks of OA progression [9]. In
mice with OA, the canonical Wnt pathway was activated
mainly in subchondral bone and forming osteophytes
[30]. Knee loading restore subchondral bone remodeling
via suppressing abnormal osteoclast activity, by increas-
ing the expression of Wnt3a, and reducing expression of
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NFATc1 (a master transcription factor for development
of osteoclasts), RANKL, TNF-«, and Cathepsin K in a
mouse model of knee OA [31]. Low Sirtuin 1 levels in
human osteoarthritis subchondral osteoblasts lead to
increased SOST expression in mineralization via sup-
pressing Wnt/p-catenin activity [32]. Inhibition of SOST
expression play a complicated role in the pathological
progression of OA by promoting subchondral bone
sclerosis, but potentially inhibiting cartilage proteolysis
[33]. Bouaziz et al. showed that SOST-knockout mice
with destabilization of medial meniscus (DMM) had
high OA scores, with increased expression of aggreca-
nases and type X collagen [34].

Based on the data presented above, we propose that
excessively activated canonical Wnt signaling in cartilage,
synovium, and subchondral bone plays a critical role in
OA development, in both an independent and interacting
manner. Accordingly, the Wnt signaling-mediated net-
work that functionally regulates chondrocytes, synovial
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cells, and osteoblasts/osteoclasts should be highlighted, as
the mechanisms underlying these events remain unclear.
The degree to which these events share similarities or
differ with regard to signaling is not yet fully resolved, nor
are interactions between different cell populations (Fig. 1).

Non-canonical Wnt signaling pathway

Key molecules and cascades in the non-canonical Wnt sig-
naling pathway have been previously summarized [35, 36].
Briefly, non-canonical Wnt signal transduction, which is
predominantly activated by Wnt5a, is classified into Wnt/
Ca®* and planar cell polarity (PCP) pathways. Through the
activation of calcium signaling by phospholipase C/protein
kinase C (PKC)/Ca*" and calmodulin-sensitive protein kin-
ase II (CaMKII), the Wnt/Ca®*/CaMKII pathway activates
the transcription factor nuclear factor associated with T
cells (NFAT) to regulate cytoskeletal rearrangements, cell
adhesion, and migration. In the PCP pathway, Wnt binds
to Fzd receptors, which activates Dvl to trigger Rho/Rho-
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Fig. 1 The signaling transduction cascades and cell-specific role of 3-catenin-dependent canonical Wnt signaling pathway in regulating chondrocyte,
synovial cells and osteoblast metabolism, whereby mediating the process of cartilage degradation, synovium inflammation, as well abnormally
activited subchondral bone remodelling in OA development. Events induced by Wnt or 3-catenin targeted angonist of antagonist/inhibitor, including
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associated kinase and Rac/c-Jun N-terminal kinase (JNK)
signaling, and actin polymerization in stimulated cells.
These complex signaling events are integrated to mediate
cytoskeletal changes, cell polarization, and motility during
gastrulation. Moreover, recent evidence supports the
involvement of Wnt5a in inflammatory responses, innate
immunity, [37, 38] and particularly, OA development.

Cartilage

Expressions of Wnt5a in articular cartilage has been
positively correlated to progressive damage of knee OA
joints [39]. In addition, activation of the Wnt5a/CaMKII
pathway correlates with OA development via promoting
calcium mobilization and CaMKII phosphorylation in
both human and animal models, while CaMKII blockade
rescued the loss of chondrocyte phenotype induced by
Wnt5a in articular chondrocytes [40]. Similarly, Wnt5A
was significantly upregulated in the condylar cartilage of
rats in an early temporomandibular joint (TMJ) OA-like
model, and was involved in IL-1B-induced MMP expres-
sion in TMJ condylar chondrocytes. Activation of Wnt5a
expression was facilitated condylar chondrocyte prolifer-
ation, hypertrophy and migration though regulated both
the expression and transcriptional activity of c-Myc and
cyclinD, and thereby inhibited COL2A1, ACAN and
promoted MMP13 expression in the condylar cartilage
of the rat early TMJ-OA [41]. Blockade of the JNK
pathway impaired the effects of Wnt5a on chondrocytes.
Yang et al. reported increased expression of Col2al, a
direct transcriptional target of Sox9 (an HMG box tran-
scription factor), in Wnt5a~~ and Col2al-Wnt5b mice,
but decreased expression in Col2al-Wnt5a transgenic
mice; therefore, it is possible that Wnt5a promotes
chondrocyte hypertrophy in part by decreasing the
transcriptional activity of Sox9 [42].

An in vitro study found that Wnt5a reduced ACAN
while promoting MMP1 and MMP13 expression via ac-
tivating [-catenin independent signaling including JNK
and CaMKII in human OA cartilage [43]. Conditioned
medium from Wnt5a-expressing cells inhibited type II
collagen expression, whereas knockdown of Wnt5a by
small-interfering RNA (siRNA) blocked this inhibitory
effect; in contrast, Wntll promoted type II collagen
expression. The opposing effects of Wnt5a and Wntl1
were blocked by inhibitors of JNK and PKC, respectively
[26]. These results also indicate different or even oppos-
ing roles for Wnt5a in normal conditions and OA
progression.

Exosomes, small extracellular microvesicles of endoso-
mal origin, are gaining increasing recognition for their
important roles in mediating cell-cell communication
[44]. Exosomal mesenchymal stem cell-derived (MSC)-
miR-92a-3p-Exos inhibited the progression of early OA
and prevented the severe damage to knee articular
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cartilage via downregulaion of WNTS5A expression to
promote Sox9 expression and enhanced aggrecan,
COMP, and COL2A1 expression in chondrocytes [45].

Taken together, activation of the non-canonical Wnt
signaling pathway, predominantly Wnt5a in view of
recent data, likely enhances cartilage degradation by
stimulating catabolic metabolism of cartilage by upregu-
lating MMP expression and decreasing collagen type II
production. Mechanisms underlying this process involve
interactions between Wnt5a/CaMKII and key molecules
from signaling pathways including JNK, c-Myc, cyclin
D1 and Sox9.

Synovium

With regard to the synovium, Lambert et al. compared
the gene expression patterns of synovial cells from in-
flamed and normal/reactive areas of synovial membrane
obtained from the same OA patient; 896 differentially
expressed genes were identified, of which Wnt5a and
LRP5 were upregulated [46]. In isolated OA fibroblast-like
synoviocytes, the combination of TNF-a and IL-17A in-
creased matrix mineralization, alkaline phosphatase (ALP)
activity, and expression of Wnt5a, bone morphogenic
protein 2 (BMP2), and Runx2, indicating osteogenic differ-
entiation. Wnt5a levels increased upon stimulation with
TNF-a alone or in combination with IL-17A [47]. These
limited data indicate the liekly involvement of Wnt5a
expression in synovial cells in OA development, although
further study is needed to reveal precise roles and mecha-
nisms of synovial non-canonical Wnt signaling in OA
development.

Subchondral bone

As the dominant cells in bone remodelling, osteoblasts
and osteoclasts are functionally regulated by Wnt5a [48].
Osteoblast lineage cell-specific Wnt5a knockout mice
(Wnt5a-cKO) showed low bone quality and reduced
bone formation [49]. Similarly, calvarial osteoblast-like
cells isolated from Wnt5a~~ mice showed impaired
mineralization even treated with BMP2 [50]. These find-
ings indicated that osteoblast-lineage cell-derived Wnt5a
is crucial for osteogenisis [50]. Osteoblasts harvested
from OA joints exhibited increased expression of non-
canonical Wnt5a ligand, ALP activity, and osteocalcin
(OC) release compared with normal osteoblasts. Wnt5a
stimulated phosphorylation of both JNK and PKC, as
well as the activity of both NFAT and activator protein
1(AP-1) transcription factors, also inhibited of Wnt5a ex-
pression partially corrected the abnormal mineralization,
OC secretion, and ALP activity of OA osteoblasts [51].
Increased Cxc/12 and Rankl gene expression induced by
JNK and Ca®*/NFAT signaling pathways led to activation
of osteoclast differentiation and enhanced subchondral
bone turnover [52].
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Collectively, these data indicate Wnt5a signaling and its
downstream cascades may lead to an abnormal balance
between osteoblasts and osteoclasts, which can increase
subchondral bone remodeling and participate in excessive
mineralization or even osteophyte formation. Cell-specific
modulation of Wnt5a expression and its receptor in
osteoblasts or osteoclasts would provide direct evidence to
elucidate the precise role of this signaling pathway in OA
(Fig. 2).

Proposed Wnt signaling-mediated network in OA
development

With respect to the mechanisms by which the Wnt signal-
ing pathway participates in OA development, a series in-
depth studies indicated that the pathogenesis of OA is, at
least in part, the result of interactions between Wnt and
multiple signaling pathways. In normal chondrocytes, the
network formed by signaling pathways such as Wnt, BMP,
Hedgehog, etc. are needed to maintain their normal
phenotype [53]. Based on recent literature, signaling path-
ways including Wnt, BMP/transforming growth factor
(TGF-P), parathyroid hormone (PTH), Hedgehog, Notch,
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hypoxia-inducible factor (HIF) and Hippo signaling ex-
hibit abnormal activity [54] and interactions with each
other. Thus, this network is a crucial participant in OA
development (Figs. 3, 4 and 5)

Nuclear factor-kappa B (NF-kB)

NF-«B signaling is important for several biological and
pathological processes [55], such as embryonic immun-
ity, apoptosis, angiogenesis, development, and prolifera-
tion [56]. Kirsch et al. showed that overexpression of
annexin A6 (a member of the highly conserved annexin
family of Ca**-dependent membrane-binding proteins)
interacted with p65 resulted in increased nuclear trans-
location and retention of the active p50/p65 NF-kB
complex, whereas plasma membrane-associated AnxA6
interfered with the membrane-association of the Wnt
signalosome complex required for the activation of
Wnt/B-catenin signaling in human cartilage degradation
during OA pathology [57]. Similarly, IL-1p stimulated
Wnt5a expression through activation of NF- kB and the
subsequently overexpression of p65 in chondrocytes,
while BAY11-7082, a specific inhibitor of IkBa-
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phosphorylation, abrogated the induction of Wnt5a by
IL-1p in the cartilage destruction caused by arthritis
[58]. In addition, Wnt5a acts to increase chondrocyte
differentiation at an early stage through CaMKII/
NFAT-dependent induction of Sox9; in contrast,
Wnt5a represses chondrocyte hypertrophy via NF-kB-
dependent inhibition of Runx2 expression [59]. This
indicates a dual role of Wnt5a to promote early chondro-
cyte differentiation in a stage-dependent manner while
repressing chondrocyte hypertrophy [59]. Thus, signaling
factors may regulate chondrocytes hypertrophy and
degeneration via interactions between Wnt and NF-kB
signaling pathways.

Bmp/TGF-

Crosstalk between Wnt and BMP pathways not only
participates in chondrocyte hypertrophy and matrix
degradation, but also stimulates bone formation via
chondrogenic or osteogenic differentiation. In vitro,
BMP2-induced Wnt/B-catenin signaling pathway activa-
tion through increased B-catenin nuclear translocation
and LRP-5 expression and that the BMP-2-induced
LRP-5 upregulation is mediated through Smadl/5/8
binding on LRP-5 promoter, resulted in MMPs and
ADAMTS-5 expression, and hypertrophic maturation of
chondrocytes by stimulating collagen X expression [60].
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In addition, gradual increases in WNT and BMP signal-
ing in joints with increasing age may contribute to the
increased incidence of OA development in older patients
with joint defects [61].

Nemoto et al. demonstrated an association between
BMP2-mediated osteoblastic differentiation and increased
Wnt5a and Ror2 expression in vivo and in vitro, and
silencing gene expression of Wnt5a and Ror2 resulted in
suppression of BMP2-induced expression of ALP and
osteocalcin (OCN), suggesting that Wnt5a and Ror2 sig-
naling form a substantial component of BMP2-mediated
osteoblastic differentiation in a Smad independent path-
way [62]. Compared with normal osteoblasts, OA osteo-
blasts dependent on TGF-B1 expression of DKK2 (the
antagonists of Wnt signaling) increased and decreased
Wnt/B-catenin signal transduction, leads to an increase of
the COL1A1 to COL1A2 ratio, as well as to an reduce in
mineralization following BMP-2 stimulation [63].

Previous studies suggest that the TGF-f/Smad pathway
plays a critical role in regulation of articular chondrocyte
hypertrophy and maturation during OA development
[64—66]. Overexpression of WISP1 in the synovium and
cartilage leads to increase in MMPs, as is found in OA
conditions, may further aggravate OA pathology by
decreasing TGF-B (Smad2/3) signaling and via a positive
feedback mechanism on canonical Wnt signaling [67].
Crosstalk between [B-catenin and TGF-f3 was reported in
hypertrophic regulation of mesenchymal stem cells
(MSCs) [68]. Continuous co-activation of these two sig-
naling pathways during chondrogenesis of MSCs resulted
in increased secretion of PTH-related peptide (PTHrP)
and expression of cyclin D1, which may have a role in the

inhibition of chondrocyte hypertrophy by suppressed ex-
pression of collagen type X, RUNX2, and alkaline phos-
phatase [68]. Indeed, interactions between TGF-B and
Bcatenin-dependent Wnt signaling, as well as the balance
between these two pathways, may play a vital role in
regulating both OA development and maintenance.

PTH

Interestingly, Wnt/B-catenin signaling regulates initiation
of chondrocyte hypertrophy by antagonizing PTHrP sig-
naling, whereas it acts independently of PTHrP signaling
to control the final maturation of hypertrophic chondro-
cytes [69]. Ma et al. demonstrated that PTH (1-34) in-
creased mRNA expression and protein levels of PTHIR
and P-catenin by repressing SOST and Dkk1 expression,
and reduced both Mankin scores and Runx2 expression in
an anterior cruciate ligament transection with DMM rat
OA model [70].

Hedgehog

Rockel et al. reported that in adult chondrocytes, acti-
vated hedgehog signal induction expression of dominant
negative equivalent TCF7L2 (dnTCF7L2) isoforms, and
that increased expression of TCF7L2 protein isoforms
limited signaling by B-catenin, resulting in an inhibition
of expression of FGF18, leading to cartilage degeneration
via induction of expression ADAMTS4 and MMP13,
which are involved in cartilage degeneration as part of
OA [71]. Therefore, the balance Hedgehog and p-catenin
signaling is critical for maintenance of articular cartilage
in adult mouse model of OA.
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Notch

Notch is actively involved in various life processes includ-
ing osteogenesis, and that Hesl, an essential mediator of
Notch signaling, generally mediates Notch signaling by
repressing expression of target genes [72, 73]. CaMKII
causes Hesl to switch from a transcriptional repressor to
transcriptional activator, thereby enhancing the expression
of catabolic factors such as Adamts5, Mmp13, IL-6, and
IL-1 receptor-like 1 in articular cartilage to promote OA
development [74]. Therefore, interactions between
Notch signaling and CaMK2 in non-canonical Wnt
signaling pathways are predicted to be involved in
OA development.

Hypoxia-inducible factor 1a (HIF1a)

HIFla is a crucial hypoxic factor for chondrocyte growth
and survival during development [75]. HIF1la inhibits -
catenin signaling by blocking transcription factor 4
(TCF4) B-catenin interaction and down-regulates MMP13
expression, thereby alleviating cartilage lesions, whereas
the TCF4 B-catenin signaling induces an OA phenotype in
mice [75]. Furthermore, AHifla “"°" mice with OA that
were intra-articularly injected with PKF118-310, an
inhibitor of the TCF4/p-catenin interaction, exhibited re-
duced cartilage degradation and MMP13 expression [75].

Hippo/YAP

The Hippo/YAP signaling pathway is important for me-
diating organ size and tissue homeostasis, and inhibition
of YAP using YAP siRNA is a promising way to prevent
cartilage degration in OA [76]. Wnt5a and Wnt5b
(highly expressed in both synovial mesenchymal stem
cells and exosomes) transported by exosomes activates
YAP via suppression of the Wnt signaling pathway target
gene SOX9 expression and ECM secretion to enhance
proliferation and migration of chondrocytes, which was
overcome by overexpressing miR-140-5p in SMSCs and
using the SMSC-140-Exos [77].

Other

An in vitro study found that Wnt5a reduced ACAN while
promoting MMP1 and MMP13 expression via activated
[-catenin independent signaling including p38, extracellu-
lar signal-regulated kinase (ERK) and phosphoinositide 3-
kinase (PI3K) in human OA cartilage [43].

Therapy for osteoarthritis

Management of the pathogenesis of OA has become
central for treatment and alleviation of related clinical
symptoms. Osteoarthritis Research Society International
recommendations cover the use of non-pharmacological
(e.g. water-based exercises, electrical nerve stimulation),
pharmacological modalities (e.g. acetaminophen, non-
steroidal anti-inflammatories, intra-articular injection of
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corticosteroids) and surgical modalities (e.g. total joint
replacement, unicompartmental knee replacement) [78].
Although traditional pharmacological therapies are ef-
fective for relieving pain, they are incapable of reversing
cartilage damage and frequently associated with adverse
events [79]. Additionally, the risk of implant revision
associated with age is a potential lifetime risk and finan-
cial burden for patients undergoing hip or knee joint
replacement, especially for men aged 50-55 years [80].

In recent years, pluripotent stem cells and regenerative
medicine strategies have been considered promising to
repair cartilage damage in OA. However, their long-term
effects remain uncertain based on limited clinical data.
In view of the important role of Wnt signaling pathways
and cascades molecules play in OA, they might be
potential target for the treatment of OA.

Therapy targeting or acting via Wnt signaling pathways
Here we summarize emerging therapies that target or
act via Wnt signaling pathways, in terms of small
molecule antagonists or agonists, herbs, enzymes, and
tissue engineering and so on.

Cartilage

Small-molecule inhibitors

First and most importantly, SM04690 was shown to
elicit protective effects on cartilage during joint destruc-
tion in a preclinical model of knee OA [81]. A further
phase 1II clinical trial of SM04690 (Samumed) for intra-
articular therapy of moderate-to-severe knee OA showed
that it improved cartilage degradation without toxicity
[82, 83]. Two small molecule inhibitors, the stapled
peptides StAx-35R (stapled B-catenin binding domain of
Axin) and SAH-Bcl9 (stapled peptide derived from the
Bcl9 homology domain-2) have been established to
inhibit B-catenin transcriptional activity [84, 85]. More
recent research suggests that SAH-Bcl9 and StAx-35R
inhibited chondrocyte phenotypic shifting of preserved
human OA cartilage explants, resulting in increased
SOX9 and ACAN gene expression, and decreased
COL10A1 expression [86].

LRP5 plays an essential role in Wnt/B-catenin signal-
ing mediated OA cartilage destruction by upregulating
catabolic factors (for example, MMP3 and MMP13) and
downregulating the anabolic factor type II collagen [87].
These effects were ameliorated in Lrp5-knockdown
mice, which exhibited reduced cartilage destruction [87].

Lorecivivint inhibited CDC-like kinase 2-mediated
(CLK2) phosphorylation of 61 serine/arginine-rich (SR)
proteins and DYRK1A-mediated (dual-specificity tyrosine
phosphorylation-regulated kinase 1A) phosphorylation of
SIRT1 and FOXO1, suggested a novel mechanism for
Wnt pathway inhibition, enhancing chondrogenesis,
inhibited expression of cartilage catabolic enzymes, and
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anti-inflammation [88]. It is a safe and well tolerated treat-
ment for OA in vivo and clinical trials. (NCT02095548,
NCT02536833, NCT03122860).

Herb

Psoralen, the active ingredient of Fructus Psoraleae
(dried ripe fruit of Psoralea corylifolia 1.), reportedly
promotes chondrocyte proliferation by activating the
Wnt/B-catenin signaling pathway, and may play an
important role in OA treatment [89]. Additionally,
tetrandrine [90] and berberine [91] were shown to exert
protective effects on OA chondrocytes.

Artemisinin (ART) inhibition of OA progression and
cartilage degradation through upregulation of FRZB in
IL-1B-induce chondrocytes and downregulation of the
expression of -catenin, which suggests that it may act
as a Wnt/B-catenin antagonist to reduce the release of
inflammatory mediators and enhance cell proliferation,
glycosaminoglycan deposition, and prevent -cartilage
apoptosis and degeneration [92].

Enzyme

Ma et al. reported that knockdown of peroxiredoxin 5
(Prdx5) by RNA interference activated apoptosis of OA
chondrocytes, which was mediated through decreased
scavenging of endogenous reactive oxygen species and
promotes the nuclear translocation of [B-catenin, de-
creases GSK-3p activity, and enhances [-catenin/TCE-
dependent transcription in osteoarthritic chondrocytes
[93]. Therefore, Prdx5 may play a protective role in
human OA cartilage degeneration.

Engineering cartilage
Kim et al. reported that the tri-butanoylated N-acetyl-D-
galactosamine analog (3,4,6-O-Bu3GalNAc), a multi-
functional carbohydrate-based drug candidate, improved
cartilage tissue production in 3D cultures in vitro by
inhibiting Wnt/B-catenin signaling [94], suggesting that
this unconventional carbohydrate-based drug may pre-
vent OA progression and limit inflammation in OA.
Praxenthaler et al. shows a correlation of WNT/f-ca-
tenin activity with de- and re-differentiation and ECM
deposition in human articular chondrocytes with time in
3D culture, thus establishing that the mechanical loading
response of chondrocytes is modulated by WNT/B-ca-
tenin activity levels [95]. Therefore, the balance between
Wnt signaling, mechanical load sensors, and ECM
signaling is important for cartilage maintenance and
breakdown.

Antidepressant

Mianserin suppresses R-spondin 2-induced activation of
Wnt/B- catenin signaling in chondrocytes and prevents
cartilage degradation in a rat model of osteoarthritis
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[96]. Fluoxetine, an antidepressant in the class of select-
ive serotonin reuptake inhibitors (SSRI), decreased ex-
pressions of Axin2 and MMP13, suppressed degradation
of proteoglycans, and increased expression of Sox9 in
chondrogenically differentiated ATDC5 cells [97]. Thus,
intraarticular injection of fluoxetine may improve OA
progression and inhibited the accumulation of -catenin
in rats OA model.

MircoRNA

MiR-320c suppress the Wnt/p-catenin signaling pathway
through the downregulation of B-catenin protein level in
nucleus, inhibiting chondrogenic degeneration in osteo-
arthritis [98]. Overexpression of miR-138 promotes
chondrocytes proliferation while it inhibits apoptosis in
OA through the WNT/B-catenin signaling pathway via
downregulation of NIMA-related kinase 2 (NEK2) [99].

Synovial

After stimulation with IL 1B or fibronectin fragments,
and blockage of Wnt signaling by DKK1, Selene et al.
showed that ERK inhibition decreased Runx2 activation,
ADAMTS 7, 12 expression and cartilage oligomeric
matrix protein (COMP) degradation in OA synovial
fibroblasts (SF) [100].

Subchondral bone

Osteoclast activity plays a significant role in the inter-
action between articular cartilage and subchondral bone,
and knee loading may suppress osteoclastogenesis through
the Wnt signaling pathway to serve as a treatment for OA
mice [31]. Therefore, knee loading-induced inhibition of
osteoclast activity may be a new noninvasive OA treat-
ment strategy.

Burt et al. reported that a fibroblast growth factor 23
(FGF23) neutralizing antibody was able to partly amelior-
ate OA abnormalities in subchondral bone and reduce de-
gradative/hypertrophic chondrogenic marker expression
in high-molecular-weight joints in vivo [101]. Moreover,
they identified FGF23-mediated Wnt/B-catenin signaling
as a candidate pathway for the treatment or prevention of
OA [101].

Physiotherapy

Pulsed electromagnetic field (PEMF) treatment pre-
vented subchondral trabecular bone loss and preserved
subchondral trabecular microarchitecture in a low-dose
monoiodoacetate rat model, at least partially via Wnt/
B-catenin signaling [102]. In addition, extracorporeal
shock wave treatment (ESWT) improved symptoms,
inhibited cartilage degeneration, and promoted rebuild-
ing of subchondral bone in OA rats, the mechanism of
which involved activation Wnt5a/Ca®* signaling in
bone marrow-derived MSCs [103].
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Dual-targeting of cartilage and subchondral bone

Dkk1l competitively binds to Wnt co-receptors LRP5/6
to inhibit Wnt signal transduction [104, 105]. Serum
levels of Dkk1 predict the progression of hip OA [106]
and are inversely correlated with the severity of knee
OA [107]. Hwanhee et al. reported that cartilage-specific
overexpression of Dkk1 exerts a protective effect against
OA cartilage destruction by inhibiting the canonical
Wnt pathway [108]. Dkkl-mediated control of Wnt/[3-
catenin activation in subchondral bone leads to reduced
severity of OA [30]. Dkk1 can decrease OA progression,
likely by reducing the severity of osteophytes [30]. Inter-
estingly, by inhibiting Dkk1, Diarra et al. were able to re-
verse the bone-destructive pattern of a mouse model of
rheumatoid arthritis to the bone-forming pattern of OA
[13]. In this manner, no overall bone erosion resulted,
although bony nodules, so-called osteophytes, did form
[13].

Therapies mediated by interactions with other signaling
pathways

The pathogenesis of OA is the result of multiple inter-
acting factors. Although the mechanism is unclear, Wnt
signaling has been shown to contribute to whole joint
disease. Recent studies have demonstrated interactions
between multiple signaling pathways in OA, including
canonical and non-canonical Wnt, Hedgehog, TGE-p,
and NF-«B signaling pathways, which represent potential
targets for the treatment of OA.

Palmatine

Studies have shown that palmatine (a member of the
protoberberine class of isoquinoline alkaloids) may delay
the progression of OA, as determined by assessments of
articular cartilage in a rabbit OA model and cultured
rabbit chondrocytes stimulated with IL-1f [109, 110],
possibly via Wnt/B-catenin and Hedgehog signaling
pathways [111].

Dickkopf 3 (DKK3)

Snelling et al. provided evidence that Dkk3, a non-ca-
nonical member of the Dkk family of Wnt antagonists,
was upregulated in OA, whereby it mediated protective
effects on cartilage partially through upregulation of
TGE-p signaling and inhibition of Wnt signaling [112].
Thus, Dkk3 treatment may prevent OA-induced cartil-
age degeneration, and early intervention targeting Dkk3
may slow the progression of OA.

Specnvezhenide (SPN) and licochalcone a

SPN is an extracted agent of the fruit of Ligustrum
lucidum [113]. Ma et al. demonstrated that IL-1f3-in-
duced transcriptional activity of NF-kB and Wnt/p-ca-
tenin pathways was greatly decreased by treatment with
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SPN, which protected cartilage in vitro by decreasing
protein levels of MMPs and inflammatory factors, and
increasing levels of collagen II and Sox9 [113]. Similarly,
Chen et al. demonstrated that licochalcone A can inhibit
IL-1pB-induced catabolism via NF-kB and Wnt/p-catenin
signaling pathways in rat chondrocytes [114].

The anti-osteoarthritic effects of emodin by inhibiting
the expression of MMPS and ADAMTS via the suppres-
sion of IkB-a degradation, the down-regulation of IKK-f
and NF-kB p65 levels, as well the reduction of Wnt/f-ca-
tenin activity by inhibiting B-catenin in-vitro and in-vivo
[115]. In vivo, cartilage treated with Costunolide showed
attenuated degeneration and lower mankin scores com-
pared to the OA group [116]. Costunolide inhibits p65
phosphorylation and the transfer into the nucleus, and
inhibits the Wnt signaling pathway through the activation
level of B-catenin and the transfer of -catenin into the
nucleus induced by IL-1f in rat chondrocytes [116].

Cationic amphipathic peptide

Hou et al. reported that the cationic amphipathic peptide
designated as pSRHH is capable of siRNA transfection
without significant cytotoxicity at all tested doses [117].
Yan et al. subsequently showed that p5SRHH NF-kB siRNA
nanotherapy mediates its chondroprotective effect par-
tially by maintaining cartilage autophagy/homeostasis via
modulation of AMP-activated protein kinase, mechanistic
target of rapamycin C1, and Wnt/B-catenin activity [118].

Conclusions and perspectives

Both canonical and non-canonical Wnt signaling path-
ways are excessively activated during OA development. A
series of studies have revealed that cell-specific modula-
tion of Wnt or its downstream effectors can lead to or
prevent aberrant changes in OA tissues. The underlying
molecular mechanisms involve other signaling pathways
such as Hedgehog, NF/kB, BMP/TGF-/Smad, PTH,
Notch and HIFla, — more specifically, the network they
construct. Further studies using various knockdown or
knock-in strategies to test functional roles of these com-
ponents are necessary to better understand the nature of
these events. Although the details of cell-specific molecu-
lar events, especially the cascades by which Wnt signaling
interacts with the other signaling pathways described
above, remain to be elucidated, key points of the network
composed by these interacting pathways are promising
potential targets for OA treatment. Notably, a recent
phase I clinical trial (NCT02095548) demonstrated that
the Wnt signaling pathway inhibitor SM04690 has poten-
tial as a DMOAD The development of additional emer-
ging genetic therapies or small molecules targeting the
Wnt signaling pathway, though only currently supported
by evidence from animal studies, should be encouraged.
Moreover, in vivo experiments and clinical data are
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needed to clarify mechanisms of action and clinical value
of the signaling networks affected by natural antioxidants
Prdx5 and Traditional Chinese Medicines containing ART
and psoralen, as they have been shown to delay the
process of OA via Wnt signaling. In addition, we should
develop a more in-depth understanding of the beneficial
mechanisms of PEMF and ESWT physiotherapy to pro-
vide more powerful evidence for clinical treatment of OA.
Moreover, new therapeutic strategies such as engineered
cartilage, pluripotent stem cells, and regenerative tech-
nologies should be explored to seek more effective therap-
ies for OA. However, before seeking new agents for OA
treatment that target the Wnt signaling pathway, further
study is needed to test the efficiency and safety of
SM04690 and its derivates before they are prescribed as
agents for OA treatment.
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