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Abstract

Introduction: p21-activated kinase 1 (PAK1) stimulates growth and metastasis in non-small cell lung cancer
(NSCLC). Protein kinase C iota (PKCι) is an enzyme highly expressed in NSCLC, regulating PAK1 signaling. In the
present study we explored whether the PKCι-PAK1 signaling pathway approach can be an efficient target in
different types of NSCLC cell and mouse models.

Methods: The effect of IPA-3 (PAK1 inhibitor) plus auranofin (PKCι inhibitor) combination was evaluated by cell
viability assay, colony formation and western blotting assay, using three types of NSCLC cell lines: EGFR or KRAS
mutant adenocarcinoma and squamous cell carcinoma with PAK1 amplification. In addition, for clinical availability,
screening for new PAK1 inhibitors was carried out and the compound OTSSP167 was evaluated in combination
with auranofin in cell and mice models.

Results: The combination of IPA-3 or OTSSP167 plus auranofin showed high synergism for inhibiting cell viability
and colony formation in three cell lines. Mechanistic characterization revealed that this drug combination
abrogated expression and activation of membrane receptors and downstream signaling proteins crucial in lung
cancer: EGFR, MET, PAK1, PKCι, ERK1/2, AKT, YAP1 and mTOR. A nude mouse xenograft assay demonstrated that
this drug combination strongly suppressed tumor volume compared with single drug treatment.

Conclusions: Combination of IPA-3 or OTSSP167 and auranofin was highly synergistic in EGFR or KRAS mutant
adenocarcinoma and squamous cell carcinoma cell lines and decreased tumor volume in mice models. It is of
interest to further test the targeting of PKCι-PAK1 signaling pathways in EGFR mutant, KRAS mutant and squamous
NSCLC patients.

Background
Non-small cell lung cancer (NSCLC) is the leading
cause of cancer related deaths and comprises several
histological subtypes: lung adenocarcinoma (LUAD),
squamous cell carcinoma (SCC) and large cell carcin-
oma. Despite the identification of targeted druggable
driver mutations and rearrangements, most cases have
poor survival [1, 2]. Recently, pembrolizumab plus

chemotherapy have provided benefit in a fraction of
patients, regardless of the level of PD-L1 expression
[3–5]. However, the effect of immunotherapy in pa-
tients with EGFR mutations is rather limited [6]. A
meta-analysis indicated that immuno-checkpoint in-
hibitors as second line treatment do not improve over-
all survival in comparison with docetaxel treatment in
EGFR-mutant patients [7]. We focus our research on
the identification of recurrent pathways occurring in
subclasses of NSCLC, including LUADs driven by
KRAS or EGFR mutations, and SCC. This stems from
the fact that atypical protein kinase Cι binding to Par6
is associated with the epithelial cell transforming
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sequence 2 (Ect2), a guanine nucleotide exchange fac-
tor that activates Rac1 in downstream PAK1, MEK1/2-
ERK1/2 signaling, regulating tumor growth in NSCLC
[8–10]. PKCι is reported to be amplified in 20.2–36.5%
of NSCLC patients, especially in SCC patients [8, 11].
PKCι mRNA is overexpressed in LUAD and SCC cell
lines and tumor tissue, and is predictive of poor out-
come [12]. The abundance of PKCι mRNA predicted
sensitivity to an anti-rheumatoid agent, aurothioma-
late, in a panel of lung cancer cell lines [8]. Auranofin,
a gold complex used to treat rheumatoid arthritis was
shown to inhibit the PI3K/AKT/mTOR signaling in
NSCLC cell lines. The administration of auranofin to
mice with xenograft tumors significantly suppresses
tumor growth without inducing toxic effects [13]. It is
of interest that auranofin enhances ibrutinib activity in
EGFR mutant LUAD by inhibiting the expression or
phosphorylation of multiple key nodes in AKT/mTOR
and MEK/ERK pathways [14]. Furthermore, it has been
demonstrated that PKCι plays an important function
in KRAS LUADs [15, 16]. PAK1 is a Ste20 (MAP 4 K)
member that is frequently overexpressed or amplified,
and has a critical function in cell growth migration,
invasion and apoptosis in NSCLC [17]. PAK1 confers
cisplatin resistance in NSCLC patients [18]. PAK1 sig-
naling has been shown to cause resistance to MAPK
kinase inhibitors in BRAF mutant melanomas [19].
PAK1 mRNA expressing EGFR mutant tumors are
resistant to EGFR tyrosine kinase inhibitors. The com-
bination of gefitinib with an AKT inhibitor (perifosine)
or PAK1 inhibitor (IPA-3) almost completely sup-
presses the tumor burden in nude mice harboring gefi-
tinib resistant cells [20]. Together with others, we have
demonstrated that the combination of AKT and EGFR
inhibitors could be of benefit in patients with EGFR
mutations [21] [22], however, even when blocking
AKT, tumor regrowth could occur through the activation
of other downstream regulators, via Src/FAK [22, 23]. We
posit that different classes of LUADs, such as EGFR mu-
tant LUADs, KRAS mutant LUADs and SCCs, could be
sensitive to the inhibition of PKCι with auranofin plus a
PAK inhibitor. Several attempts have been made to specif-
ically target PAK1 in cancer, however, its catalytic pocket
is large and highly flexible, in addition to its highly mobile
N-terminal lobe, which presented a challenge in prevent-
ing specific PAK inhibitors [24, 25]. For this reason, we
used IPA-3 (2,2′-dihydroxy-1,1′-dinaphthyldisulfide) as a
PAK inhibitor [26] with PKCι inhibitor.
This study aimed to estimate the therapeutic effect of

PKCι-PAK1 signaling pathways in different types of NSCLC.

Materials and methods
Detail of standard methodologies for cell culture, re-
agents, cell viability assay, colony formation assay, and

western blotting analysis are described in Supplementary
materials and methods.

In vitro screening for PAK1 inhibitor
The measurement of PAK1 kinase was performed on a
Caliper LabChip EZ Reader II equipped with a 12-sipper
chip in Profiler Pro separation buffer supplemented with
CR-8 and analyzed using EZ Reader software (Caliper Life
Sciences; Hopkinton, MA, USA). The test compounds
were incubated with PAK1 kinase and fluorescence-labeled
substrate Peptide 14 (Sequence RRRLSFAEPG) in the kin-
ase assay buffer at 30 °C for 10min, followed by adding
9.5 μM ATP to initiate the reaction. After incubation for 1
h at 30 °C, the phosphorylated and unphosphorylated sub-
strates were separated and detected by EZ Reader II device.
IPA-3 was used as a positive control. The separation of
peptide 14 was performed under the following optimized
conditions: upstream voltage = − 500 V, downstream volt-
age = − 2400 V and pressure = − 1.4 psi using a marker dye
consisting of unphosphorylated peptide 14. After PAK1
inhibitors were screened from the Target Mol-Inhibitory-
Library, the anti-tumor effects of candidates were esti-
mated by MTT assay using A549 cell lines.

Nude mouse xenograft
Four to five-week-old female nude mice were kept in in-
dividually ventilated cages (5 per cage) with access to
food and water, at 20 °C and 50 ± 20% relative humidity
under a 12:12 h light-dark cycles and pathogen free
conditions. Three cell line xenograft tumors were estab-
lished by subcutaneously injecting 4 × 106 cells sus-
pended in phosphate-buffered saline mixed 1:1 with
Corning Matrigel (356,237, Corning, NY, USA) via right
flank. Tumor size was measured in two orthogonal
directions using calipers every 2 days and weights were
determined every 2 days. After tumors became palpable
(~ 100–300 mm3), mice were randomized into a vehicle
group and treated groups with IPA-3 alone, auranofin
alone, OTSSP167 alone, IPA-3 plus auranofin, or
OTSSP167 plus auranofin. Each reagent was suspended
in 1% [weight/volume (w/v)] Kolliphor HS15 and admin-
istered once daily by intraperitoneal administration
(IPA-3 and auranofin) or oral gavage (OTSSP167) of 10
mg/kg. Mice in the untreated group were given the same
volumes of 1% Kolliphor HS15. The tumor volume
(mm3) was estimated using the equation length ×
(width)2 × 0.5.

Statistical analysis
In MTT and colony forming assays, the strength of inter-
action between reagents was determined by calculating
the combination index (CI) according to method of
isobologram-combination index (Chou-Talalay method
[27]). The CI < 0.6, 0.6 < CI < 0.8, 0.8 < CI < 0.9, 0.9 < CI <
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1.1, 1.1 and > 1.1 indicates strong synergism, moderate
synergism, slight synergism, additive interaction, and
antagonism, respectively. In mice xenograft experience,
volume and weight of tumor and mice body weight were
compared as continuous variables by using Mann-
Whitney U tests. Two-sided statistics was employed and a
p value of less than 0.05 was regarded as significant.

Results
The combination of a PAK1 inhibitor plus antitumoral
compounds showed cell viability and colony formation
inhibition synergy
To investigate the potential antitumoral properties and
possible synergistic effect of a PAK inhibitor (IPA-3)
combination with several compounds used in cancer
treatment, such as EGFR inhibitors (osimertinib and
afatinib), PKCι inhibitor (auranofin), MEK inhibitor (tra-
metinib), and a Flk3/Syk, and potential multiple PKC in-
hibitor (midostaurin), several lung cancer cell lines
possessing different molecular characteristics were
tested, such as HCC827 (EGFR mutated), H23 (KRAS
mutated) and H520 (PAK1 overexpression). We evalu-
ated cell viability and colony formation inhibition. Re-
sults indicated that the IPA-3 plus osimertinib
combination showed synergism in H23 cell lines in cell
viability assays with a CI of 0.73. IPA-3 plus trametinib
was also synergistic in the H23 cell line (CI was 0.74)

(Fig. 1a). To highlight, IPA-3 plus PKCι inhibitor, aura-
nofin, showed the highest synergism in each of the 3 cell
lines (CI ranged 0.34 to 0.39) regardless of difference in
histology or genetic profile (Fig. 1). IPA-3 plus midos-
taurin was slightly synergistic or addictive in 3 cell lines.
The CIs of each combination treatment were shown in
Table 1. The IC50s of each inhibitor in 3 cell lines are
shown in Additional file 1: Table S1.
Furthermore, dose-dependent colony formation assays

indicated that the combination of IPA-3 plus auranofin
significantly inhibited the forming of colonies, compared
to single agent treatment and showed high synergism in
3 cell lines (lowest CI ranging from 0.24–0.46) (Fig. 2
and Additional file 1: Figure S1). The values of quantifi-
cation of crystal violet concentration are shown in Fig.
2b and Additional file 1: Figure S1B/S1E. The combin-
ation index value was calculated to assess the nature of
drug-drug interactions and it decreased in a dose-
dependent manner (Fig. 2c and Additional file 1: Figure
S1C/S1F).

The combination of a PAK1 inhibitor plus antitumoral
compounds downregulated the expression of proteins
related to deregulated signaling pathways in lung cancer
To study the mechanisms involved in the synergism be-
tween IPA-3 and auranofin, we analyzed the effects of
this combination in the expression and phosphorylation

Fig. 1 Cell viability and combination index by MTT assay testing single or combination treatment. a-c The effect in cell viability of the
combination of the PAK inhibitor IPA-3 and the PKCι inhibitor auranofin was assessed by MTT assay in HCC827, H23 and H520 cell lines. The
experiments were performed by triplicate. Drug concentration was increased gradually from 0 to 3 times of IC50. Cell viability on combination
treatment (green line) was decreased significantly in comparison to single drug treatment (red and blue line). d-e Range of combination index of
combination treatment on each cell line. Gray part is the area corresponding to addictive interaction. The combination of IPA-3 plus auranofin
was synergic and showed lowest combination index (0.34–0.39) in 3 cell lines. IPA-3 plus midostaurin was synergic only in HCC827 and IPA-3 plus
osimertinib was synergic only in H23
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of proteins that belong to several signaling pathways
related to lung cancer. Cell lysates were harvested after
being treated with the indicated drug concentrations for
6 h and subjected to western blotting analysis. Results
showed that the combination of IPA-3 plus auranofin
abrogated the expression of total/phosphorylation of
PAK1, PKCι, ERK 1/2, mTOR, AKT, and YAP1 in the 3
lung cancer cell lines studied HCC827 (EGFR-mutant
LUAD), H23 (KRAS-mutant LUAD) and H520 (PAK1
overexpression). Also, downregulation of protein expres-
sion of EGFR, MEK, AXL, Src and STAT3 was observed.
(Fig. 2 and Additional file 1: Figure S2). In summary,
there is a clear downregulation of proteins, and, in most
of them, a clear decrease in phosphorylation was de-
tected when combining IPA-3 plus auranofin, indicating
that this drug combination may target multiple signaling
pathways. In addition, we investigated the molecular
effects of auranofin combined with osimertinib, an EGFR
inhibitor used in EGFR-mutated lung cancer patients.
The drug combination was tested in the EGFR-mutated
cell line, HCC827, at the indicated dose for a period of
6 h. Protein lysates were analyzed by western blotting
technique which showed a clear protein expression
decrease in AKT, MET, AXL and CDCP1 (Fig. 2). We
carried out similar experiments with the combination of
auranofin plus trametinib, a MEK inhibitor, in the KRAS
mutated cell line, H23, and observed a clear downregula-
tion of PAK1, PKCι, EGFR, ERK 1/2, AKT, MET, AXL,
STAT3, and MEK 1/2. Inhibition of phosphorylated
PAK1 (Ser144), PKCι, ERK 1/2, STAT3 and MEK 1/2
was also observed.

Screening of alternative PAK1 inhibitor and validation of
combination therapeutic effect with auranofin
To identify pharmacological inhibitors of PAK1 kinase
activity, we screened the Target-Mol inhibitor library
based on an optimized LabChip EZ Reader kinase assay
system. Titration and validation of the kinase assay are
shown in Additional file 1: Figure S3. Out of 320 com-
pounds tested, 13 candidates showed PAK1 inhibitory ef-
fect. The details and inhibition ratio of each compound are
shown in Additional file 1: Table S2 and Additional file 1:
Figure S4. Among them, the PAK1 inhibitory effects of
some compounds, such as bosutinib (1-A5), WH-4-023 (3-

F9), and MHY1485 (4-H9), were comparable to IPA-3, and
their inhibitory effect on cell growth was estimated
using the MTT assay. Cell viability tested in A549 cell
lines showed that 5 compounds (bosutinib, thonzo-
nium bromide, AT13148, OTSSP167, and reversine)
significantly suppressed cell growth at the concentra-
tions of 10 and 20 μM (Fig. 3).
Furthermore, among 5 potential PAK1 inhibitors,

OTSSP167 plus auranofin showed synergism in 3 cell
lines. CIs in MTT assay were 0.78–0.79. The protein
expressions of phosphorylated PAK1 were suppressed by
× 0.5, × 1.0, and × 3.0 times higher dose of IC50 (Fig. 4).
Reversine indicated synergism with auranofin only in
H520 cell lines (CI: 0.76). The IC50 and CI of OTSSP167
or reversine plus auranofin are shown in Table 2. Colony
formation assay showed synergistic effect of OTSSP167
plus auranofin in 3 cell lines with lowest CI ranging from
0.50–0.59 (Fig. 5a-c and Additional file 1: Figure S5).
Western blotting experiments showed that OTSSP167
inhibited more PAK1 phosphorylated residues compared
to IPA-3. The combination of OTSSP167 plus auranofin
abrogated phosphorylated PAK1 (Thr432 and Ser144 in 3
cell lines) (Fig. 5d). In addition, the combination of these
two drugs downregulated the PKCι expression and inhib-
ited its phosphorylation.

The combination of PAK1 and PKCι inhibitors suppressed
tumorigenesis in a nude mouse Xenograft model
We performed nude mice xenograft experiments to explore
the pharmacological combined effect of PAK1 and PKCι
inhibitors. HCC827, H23, or H520 cell lines were inocu-
lated subcutaneously into mice and when tumor size
reached an average volume of 100–300mm3, single reagent
(IPA-3, OTSSP167, auranofin) or combination of IPA-3 or
OTSSP167 plus auranofin or vehicle were inoculated via
intraperitoneal administration (auranofin and IPA-3) or
oral gavage (OTSSP167) every 2 days for 2 or 4 weeks.
Combination therapy showed stronger anti-tumor effect
compared to mono therapy in 3 mice model cell lines. IPA-
3 plus auranofin inhibited tumor growth, both in volume
and weight, compared to IPA-3 alone or auranofin alone.
The combination of OTSSP167 plus auranofin showed
significant inhibition of tumor growth in the 3 mice model
cell lines compared to single OTSSP167 or auranofin treat-
ment (Fig. 6 and Additional file 1: Figure S6). Compared to
vehicle group, mice body weight was significantly reduced
in OTSSP167 plus auranofin and single OTSSP167 treat-
ment in the 3 mice model cell lines. The combination of
IPA-3 plus auranofin induced significant body weight loss
in HCC827 and H520 cell lines mice models.

Discussion
Inactive PAK1 is reported to be a homodimeric pro-
tein. Binding of Cdc42/Rac1 to Cdc42/Rac1-binding

Table 1 Combination index of regents in 3 cell lines

IPA-3
+
Afa

IPA-3
+
Osi

IPA-3
+

Aura

IPA-3
+

Mido

IPA-3
+
Tra

Osi
+

Aura

HCC827 0.951 0.876 0.371 0.819 1.123

H23 0.944 0.727 0.376 0.902 0.836 0.929

H520 0.838 0.794 0.347 1.073 0.766

Abbreviations: Afa afatinib, Aura auranofin, Mido midostaurin, Osi osimertinib,
Tra trametinib
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domain (CRIB) relieves inhibition by disrupting the
PAK1 homodimer [28]. PAK1 is activated by several
mechanisms that include PKCι commonly upregulated
in NSCLC [12, 29], such as TNFα, CD3/CD28 (T cell
receptor engagement). EGFR signaling actively

suppresses TNF mRNA levels by inducing expression
of miR-21. EGFR TKIs result in loss of miR-21 and in-
crease TNF mRNA stability, leading to EGFR TKI
resistance in EGFR mutant NSCLC [30]. Therefore, it
is tempting to speculate that an EGFR TKI, PAK

Fig. 2 Cell viability by colony forming assay and western blotting by treatment using single reagent or combination of IPA-3 plus auranofin in
HCC827 cell lines. IPA-3 plus auranofin potentiates colony formation inhibition and protein expression. a HCC827 cell colonies were grown under
single or combination increasing dose of IPA-3 and/or auranofin. Fixed colonies were stained using crystal violet. The experiments were made at
least three times and a representative image of colon formation assay is shown. b Concentration of crystal violet was represented as ratio to
control (non-treatment colonies defined as 1). Crystal violet was absorbed using 2% sodium dodecyl sulfate and measured at 570 nm. c
Combination index by each concentration of IPA-3 and auranofin. Combination index decreased in dose-dependent manner. Combination index
was included in synergistic area (< 0.9). d HCC827 cell line was exposed to 50 μM IPA-3, 15 μM auranofin or 0.1 μM osimertinib and the
combinations of IPA-3 plus auranofin or osimertinib for 6 h. Protein expression and activation were analyzed by western blotting. Actin was used
as house-keeping protein. The experiments were made at least twice. Abbreviations: S, serine; T, threonine; Y, tyrosine
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inhibitor combination could serve as novel combin-
atory therapy for EGFR mutant NSCLC. The develop-
ment of PAK1 inhibitors is difficult due to their large
and highly flexible catalytic pocket and highly mobile
N-terminal lobe [29, 31, 32]. PAK inhibitor combina-
tions with targeted drugs have been tested in NSCLC
cell lines, including apoptosis protein inhibitors (IAP,
EGFR, MEK1/2 and Src inhibitors with PAK1 knock-
down) [33]. Strong combinatorial activity was con-
firmed for dual inhibition of PAK1 and IAP in EBC-1
cells [33]. Activity was demonstrated with an inhibitor
targeting PAK1 activation-3′ (IPA-3) [33]. However,
the cardiac toxicity noted with IPA-3 prevents its clin-
ical use [34]. PAK1 serves as a mediator of intracellular
calcium ion homeostasis in the heart. PAK1 inhibition
induces exaggeration of calcium ion and arrhythmia
[35, 36]. Although it is unknown whether the toxicity
is reversible or not, the risk can be reduced by lower doses
of IPA-3 [34]. An auranofin phase I study for rheumatoid
arthritis patients [37] and a randomized multicenter study
for asthma patients [38] have reported no cardiac toxicity.
Our study suggested that the dose of IPA-3 can be
decreased in combination with auranofin. Nevertheless,
cardiac toxicity is a major concern and attention should

be paid to safety use in PKCι-PAK1 signaling strategy. We
tested the combination of IPA-3 plus other inhibitors in
cell models. IPA-3 plus auranofin showed high synergism
in cell viability and colony formation assays in three
NSCLC cell lines used. The inhibitory effect was superior
to other combinations, such as EGFR tyrosine kinase in-
hibitors (either osimertinib or afatinib) in the HCC827, or
MEK inhibitor (trametinib) in the H23 cell line. Also, in
the SCC cell line, the combination index was significant
for IPA-3 plus auranofin. Auranofin has already been clin-
ically available for rheumatoid arthritis and a clinical trial
for NSCLC and small cell lung cancer is ongoing
(NCT01737502). Another PKCι inhibitor, gold compound
aurothiomalate, is also clinically available for rheumatoid
arthritis and a phase I study has been successfully per-
formed for advanced NSCLC [39]. However, IPA-3 has
never been clinically used so we explored a PAK1 inhibi-
tor with potential clinical availability.
OTSSP167 is a maternal embryonic leucine-zipper kinase

(MELK) inhibitor with anti-cancer effect reported in several
tumors, as well as in chronic lymphocytic leukemia [40].
The anti-tumor effects of OTSSP167 have been investigated
in breast cancer (NCT02926690) and leukemia (NCT0279
5520) clinical trials [40–42]. OTSSP167 [41] inhibited

Fig. 3 Structures and cell growth inhibitions of the selected PAK1 inhibitors tested in A549 cell lines based on the preliminary screening
(Additional file 1: Figure S4). The effect in cell viability of the potential PAK inhibitors. A549 cells were incubated with the 9 compounds at the
concentration of 10 or 20 μM for 72 h and the cell viability was determined using MTT assay. Five compounds (1-A5, 1-C10, 2-C11, 3-A7, and 3-
H3) significantly suppressed the growth of A549 cell lines at the range concentration of 10 and 20 μM. Statistical analysis was performed by
comparing with the value of control. The experiments were made by triplicate. a-e The structures of 5 compounds which suppressed the cell
viability. f Cell inhibition ratio on tested 9 compounds. Five compounds surrounded red square showed high PAK1 inhibition
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PAK1 with lower IC50 than other potential PAK1 inhibi-
tors, such as bosutinib [43], thonzonium bromide [44],
AT13148 [45] and reversine [46] (Fig. 4) and showed high
synergism with auranofin in all three cell lines.
The phosphorylated residue Ser144 of PAK1 was inhib-

ited in three cell lines. The phosphosites, Ser21 or Thr423,
also contribute towards PAK1 activation, although, Ser144
is the most critical for PAK kinase activity [47]. Phosphor-
ylated Ser144 on PAK1 was abrogated by IPA-3 plus aura-
nofin, as well as by OTSSP167 plus auranofin.
Our model showed that some PAK1 phosphosites

were inhibited by, not only IPA-3, but also auranofin
alone. IPA-3 did not inhibit PKCι expression. This sug-
gests that auranofin inhibits PAK1 from the upper
stream of PKCι-PAK1 signaling and stronger inhibition
of PKCι-PAK1 signaling resulted in stronger

synergism. Although osimertinib monotherapy in
HCC827 cell lines or trametinib monotherapy in H23 cell
lines also inhibited some phosphorylated PAK1, the com-
bination of auranofin plus these reagents was not synergis-
tic and showed less abrogation of RTK and non-RTK. In
addition, midostaurin, a FLT3 inhibitor, and a potential in-
hibitor of all PKC isoforms [48] was not synergistic with
auranofin (Fig. 1). In addition, although OTSSP167 served
as a MELK inhibitor, inhibition of MELK expression was
similar between OTSSP167 alone, and OTSSP167 plus
auranofin (Fig. 5d), suggesting that synergism in
OTSSP167 plus auranofin was not induced by MELK in-
hibition. Thus, PKCι-PAK1 signaling is an important path-
way in tumor genesis in EGFR mutant, KRAS mutant and
SCC cell lines. Additionally, due to the inhibition of most
proteins analyzed by the auranofin plus IPA-3 or
OTSSP167 combination, we hypothesize that this com-
pound combination could affect the proteasome activity as
previously reported [49].
In the mice xenograft model, a significant decrease in

tumor volume was confirmed by the OTSSP167 plus
auranofin combination. Although IPA-3 plus auranofin
showed anti-tumor effect, it did not reach a significant
difference. OTSSP167 suggested stronger PAK1 inhib-
ition compared to IPA-3 in western blotting; phosphory-
lated PAK1 at Thr423/Ser144/Thr204 in HCC827 cell

Table 2 IC50 (nM) or combination index (CI) of each single
treatment or combination treatment in 3 cell lines

Reagent HCC827 H23 H520

IC50
OTSSP167 22 18 13

Reversine 350 1300 5300

CI
OTSSP167 + Aura 0.777 0.795 0.783

Reversine + Aura 1.063 1.130 0.795

Abbreviations: Aura auranofin

Fig. 4 Cell viability assay using potential PAK inhibitors. The potential PAK inhibitor OTSSP167 synergizes with auranofin in cell viability
assays. a-c The results of MTT assay using alternative PAK1 inhibitors candidates in 3 cell lines: HCC827 (a), H23 (b), and H520 (c). OTSSP167
showed the lowest IC50 in 3 cell lines (blue line). (d) Combination index of OTSSP167 plus auranofin indicated synergism in 3 cell lines. The
combination of reversine plus auranofin also indicated synergism in H520 cell lines but not in HCC827 and H23 cell lines. (e) OTSSP167
inhibited 3 phosphorylated PAK1 residues at the concentration of 0.5, 1.0, and 3.0 times higher of IC50
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lines and Thr423 in H23 cell lines were inhibited by
OTSSP167 alone, but not by IPA-3 alone. These differ-
ences between IPA-3 and OTSSP167 might explain the
difference in results of the mice xenograft model. Al-
though mice body weight was significantly decreased in
OTSSP167 alone, or OTSSP167 plus auranofin in all 3
cell lines, there was no significant difference between

OTSSP167 alone, and OTSSP167 plus auranofin. Chung
et al. showed OTSSP167 was tolerable in the mice model
without adverse body weight loss [41]. Adverse events of
OTSSP167 should be further examined.
Our research has centered on targeting PKCι-PAK1 sig-

naling and was effective with auranofin plus OTSSP167 in
3 lung cancer models in vitro and in vivo. Although

Fig. 5 Colony formation assay in HCC827 cell lines and western blotting in 3 cell lines by mono therapy or combination treatment of OTSSP167
plus auranofin. The combination of OTSSP167 and auranofin potentiates colony formation inhibition in HCC827 cell lines. Combination of
OTSSP167 and auranofin downregulates expression and inhibits activation of PAK1 and PKCι. a HCC827 cell colonies were grown under single or
combination treatment (OTSSP167 and auranofin) at indicated dose. Fixed colonies were stained using crystal violet. b Concentration of crystal
violet was represented as ratio to control (non-treatment colonies defined as 1). Crystal violet was absorbed using 2% sodium dodecyl sulfate and
measured at 570 nm. c Combination index by each concentration of OTSSP167 and auranofin. Combination index decreased in dose-dependent
manner. Combination index was included in synergistic area (< 0.9). d HCC827, H23 and H520 cell lines were exposed to 3 or 10 μM auranofin
(10 μM for HCC827, 3 μM for H23 and H520) or 1 μM OTSSP167 and the combination of OTSSP167 plus auranofin for 6 h. Protein expression and
activation were analyzed by western blotting. Actin was used as house-keeping protein. The experiments were made at least twice. The
combination of OTSSP167 plus auranofin abrogated the expression and phosphorylation of PAK1 and PKCι. Abbreviations: S, serine; T, threonine;
Y, tyrosine
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Fig. 6 (See legend on next page.)
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OTSSP167 inhibited phosphorylated PAK1, we cannot
rule out that other activators of PAK1 can intervene in
lung cancer, like MLK3 and TNFα.
Auranofin has been investigated in a clinical trial for

NSCLC and small cell lung cancer (NCT01737502). A Phase
I study of OTSSP167 for solid tumors (NCT01910545) and
a feasibility evaluation for healthy volunteers (NCT027685
19) have been completed. Other clinical trials of OTSSP167
are ongoing in breast cancer (NCT02926690) and leukemia
(NCT02795520). Targeting PKCι-PAK1 signaling pathways
is of interest to be further tested clinically in EGFR mutant,
KRASmutant, and squamous NSCLC patients.

Conclusions
The Combination of PKCι-PAK1 inhibitors was highly
synergistic in EGFR and KRAS mutant adenocarcinoma
and squamous cell carcinoma of the lung, in both in vitro
and in vivo mice models. It is warranted to further test the
therapeutic strategy of targeting PKCι-PAK1 signaling
pathways in EGFR mutant, KRAS mutant and squamous
NSCLC patients.
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