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Abstract

Breast cancer has grown to be the second leading cause of cancer-related deaths in women. Only a few treatment
options are available for breast cancer due to the widespread occurrence of chemoresistance, which emphasizes
the need to discover and develop new methods to treat this disease. Signal transducer and activator of transcription 3
(STAT3) is an early tumor diagnostic marker and is known to promote breast cancer malignancy. Recent clinical and
preclinical data indicate the involvement of overexpressed and constitutively activated STAT3 in the progression,
proliferation, metastasis and chemoresistance of breast cancer. Moreover, new pathways comprised of upstream
regulators and downstream targets of STAT3 have been discovered. In addition, small molecule inhibitors targeting
STAT3 activation have been found to be efficient for therapeutic treatment of breast cancer. This systematic review
discusses the advances in the discovery of the STAT3 pathways and drugs targeting STAT3 in breast cancer.
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Background

Transcription factors (TFs) are proteins possessing do-
mains that bind to the DNA of promoter or enhancer
regions of specific genes. Several TFs are directly in-
volved in the development and progression of breast
cancer. One of the most prominent TF families in breast
cancer is the signal transducers and activators of tran-
scription (STAT) family, which is comprised of seven
structurally similar and highly conserved members,
namely, STATI1, STAT2, STAT3, STAT4, STAT5a,
STAT5b and STAT6 [1, 2]. In general, these family
members contain six common functional domains: an
N-terminal domain (NH2) which is called STAT int
now, a coiled-coil domain (CCD), a DNA-binding do-
main (DBD), a linker domain, an SRC homology 2 do-
main (SH2) and a transactivation domain (TAD) [3].
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Since the discovery of STAT3 in 1994, research has been
primarily focused on its close association with cancer
progression, proliferation, metastasis and multidrug re-
sistance [4, 5]. Extensive reviews have described the clas-
sical STATS3 signaling pathways [6-8]. Here, we present
a short overview of the STAT3 signaling pathways as
depicted in Fig. 1. Briefly, STAT3 is activated through
several cytokines, including interleukin 6 (IL-6) and
interleukin 10 (IL-10), and growth factors, including
epidermal growth factor (EGF), fibroblast growth factor
(FGF) and insulin-like growth factor (IGF) [9, 10]. Once
these factors bind to their corresponding receptors,
Janus kinases (JAKSs) are activated [11]. JAKs phosphor-
ylate the cytoplasmic tail of the cognate receptor and
STAT3 via its SH2 domain binds to phosphorylated
tyrosine residues. The phosphorylated STAT3 forms
homodimers and translocate into nucleus and, thus, can
exchange signals between the cytoplasm and nucleus.
Upon translocation into the nucleus, pSTAT3 forms a
complex with some coactivators, including p68, and
binds to the promotor region of target genes to activate
their transcription [12]. This review aims to explore the
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Fig. 1 The classical IL-6/STAT3 signaling pathway in cancer cells. IL-6 binds to the membrane-bound IL-6 receptor a (IL-6R) and IL-6 receptor 3
(also known as gp130). The IL-6/IL-6R/gp130 complex activate the phosphorylation of JAKs, followed by STAT3 phosphorylation and activation.
Growth factors, such as FGF, IGF and EGF, can also phosphorylate STAT3 by binding to their cognate membrane receptors. Then, phosphorylated
STAT3 forms a homodimer and translocates into the nucleus to bind to the promotor region of target genes and activates target gene transcription
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mechanism of STAT3 in breast cancer development and
summarize the latest advancements made.

Advances in the study of STAT3 signaling
pathways in breast cancer

The role of STAT3 in breast cancer progression

An illustration of the advances in our understanding of
the STATS3 signaling pathways in breast cancer progres-
sion is shown in Fig. 2. A member of the IL-6 family of
cytokines, Oncostatin M (OSM) can induce IL-6 upregu-
lation and STAT3 phosphorylation to promote breast
cancer progression [13] and to activate STAT3 and hyp-
oxia inducible factor 1 alpha (HIF-1a) in estrogen recep-
tor (ER)- breast cancer cells or in ER+ breast cancer
cells in cooperation with IL-6 [14]. Additionally, other
interleukins, such as IL-35 and IL-8, are also found to
promote breast cancer progression by activating STAT3.
IL-35 is found to inhibit conventional T (T-conv) cells
and promote breast cancer progression via activation of
STAT1 and STAT3 [15], whereas IL-8 and growth-

regulated oncogene (GRO) chemokines are found to ac-
tivate STAT3 and promote the progression of inflamma-
tory breast cancer [16]. In contrast, low expression of
IL-17 is found to inhibit STAT3 activation [17].

Other mediators of STAT3 expression and activation in-
clude activators, such as prostaglandin E2, cyclooxygenase-
2 (COX2) and SET and MYND (myeloid-Nervy-DEAEF-1)
domain-containing protein (SMYD2), as well as its inhibi-
tors, such as microRNA and protein tyrosine phosphatase 2
(PTPN2). Epigenetic regulators have been widely investi-
gated and discovered to regulate STAT3 activation in
breast cancers in recent years. Li et al. have found that his-
tone deacetylase 6 (HDACS), a class II histone deacetylase,
and prostaglandin E2 and COX2, can upregulate STAT3
activation in breast cancer [18]. In addition, lysine methyl-
transferase SMYD2 can activate the methylation and phos-
phorylation of STAT3 to promote breast cancer
progression [19]. MicroRNA (miR) has become a hot topic
in the fields of cancer biology and development in recent
years. Pang et al. have demonstrated that nuclear enriched
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Fig. 2 Advances of the STAT3 signaling pathways involved in breast cancer progression. Interleukins, including IL-6, IL-8 and IL-35, can bind to
their receptors and activate the phosphorylation of JAKs and STAT3, OSM can increase IL-6-mediated activation, and IL-17 binding to its receptor
leads to inhibition of STAT3 phosphorylation. STAT3 phosphorylated by EGF can be inhibited by PTPN2. COX2 and prostaglandin E2 upregulated
by HDAC6 can activate STAT3 phosphorylation, and SMYD2 has a similar effect. Additionally, STAT3 and NEAT1 can form a loop to activate the
phosphorylation of STAT3, which is inhibited by miR-124. The activated and phosphorylated STAT3 dimers translocate into the nucleus and
activate the transcription of target genes involved in breast cancer progression

abundant transcript 1 (NEAT1) forms a feedback loop with
STAT3 to promote breast cancer progression. However,
NEAT]1 is suppressed by miR-124 [20]. Interestingly, glu-
cosamine is found to suppress the activation of STAT3 and
decrease breast cancer stemness and progression [21]. Add-
itionally, knockdown of PTPN2 leads to EGF-mediated
STATS3 activation [22]. The association of chronic inflam-
mation with breast cancer progression is widely recognized,
but it can be inhibited by blocking STAT3 [23]. Other me-
diators of STAT3 signaling pathways are also extensively
studied. Kim et al. have found that the IL-6/STAT3/ROS
pathway can not only promote breast cancer progression
and inflammation but also increase the formation of breast
cancer stem cells [24]. Moreover, TGFp-regulated FAM3C/
Interleukin-like EMT Inducer (ILEI), an oncogenic member
of the FAM3 cytokine family, can mediate STAT3 signaling
pathway to drive breast cancer stem cell formation and

promote breast cancer progression [25]. In addition,
TNERSF1A, a gene encoding a transmembrane receptor
for TNF-«, can be modulated by STAT3 and promote NF-
KB signaling in breast cancer [26].

There were also some STAT3 co-factors influenced
the proliferation and progress of breast cancer. Progranu-
lin (PGRN), was seen to associate with chemoresistance
and worse prognosis in breast cancer [27, 28], and the use
of a specific progranulin antisense oligonucleotide was re-
cently seen to hamper STAT3 oncogenic functions in
CRC cells [29], suggesting a similar effect also in breast
cancer cells. The cyclin dependent kinase 5 (CDK5) regu-
latory subunit-associated protein 3 (CDK5RAP3, also
called C53/LZAP) was originally regarded as a p53 co-
activator [30]. A recent research reported that CDK5RAP3
was associated with primary breast cancer progression
and proliferation, and also enhanced the expression of
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STAT3-dependent genes [31]. Thus, targeting the co-
factor of STAT3 maybe a potential therapeutic approach
in breast cancer management.

The role of STAT3 in breast cancer proliferation and
apoptosis

The illustration with advances of STAT3 signaling path-
ways in breast cancer proliferation and apoptosis is
shown in Fig. 3. A recent research has reported that
downregulation of zinc-finger gene DPF3 (also known as
CERD4) promotes proliferation and motility of breast
cancer via activating JAK2/STAT3 pathway [32]. It has
been reported earlier that STAT3 can upregulate cyclin
D-1, c-myc, and bcl-2 to suppress the apoptosis of breast
cancer cells, indicating a potential involvement of STAT3
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in cell cycle and survival [33]. Moreover, STAT3 activated
by IL-6/JAK2 pathway can inhibit Bax/Bcl-2-related
caspase-dependent apoptosis [34]. However, overexpres-
sion of WW domain-containing oxidoreductase (Wwox)
blocks the combination of STAT3 and IL-6R, resulting in
inhibition of proliferation [35]. Another research shows
that IL-320 targets chemokine ligand (CCL)18/STAT3
pathway to suppress macrophage-promoted breast cancer
progression [36]. In addition, miRNAs are also widely in-
vestigated in breast cancer proliferation and invasion. Park
et al. have found that miR-125a and let-7e could inhibit
IL-6/STAT3 pathway to mediate the breast cancer prolif-
eration and vasculogenic mimicry formation [37], and Shi
et al. have found that miR-124 could suppress the mRNA
and protein levels of STAT3 and inhibit the proliferation
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Fig. 3 Advances of the STAT3 signaling pathways involving breast cancer proliferation and apoptosis. Classical IL-6 /JAK/STAT3 pathways can
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activate the transcription of cyclin D-1, c-myc, bcl-2 and Bax to promote the proliferation and inhibit the apoptosis of breast cancer. miR-125a,
miR-25-3p and p16 can promote the binding of IL-6 to its receptors, whereas Wwox has the opposite effect. CCL-18 binding to its receptor can
activate the phosphorylation of STAT3, which can be inhibited by IL-326. The circuit loop of phosphorylated STAT3, TMEM16A and EGF leads to
continuous activation of STAT3. miR-93-5p, SMYD2, TRIM14 and PKT-M2 induce the activation of STAT3, whereas miR-124 and miR-9 inhibit the
activation of STAT3 and breast cancer proliferation. Let-7a-5p, hnRN-A and phosphorylated STAT3 dimers form a circuit loop to upregulate PKM2
and promote the proliferation and inhibit the apoptosis of breast cancer cells. DPF3 suppressed by phosphorylated STAT3 can promote breast
cancer proliferation. Additionally, transcription factor EB (TFEB) can combine with phosphorylated STAT3 dimers to promote the transcription of
target genes involved in breast cancer proliferation
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and invasion of breast cancer [38]. Similarly, miR-9 is
reported to inhibit STAT3 activation and breast cancer
proliferation [39]. In contrast, miR-93-5p and miR-25-3p
are found to mediate STAT3 and promote breast cancer
proliferation [40, 41]. Since the discovery of Warburg
effects, metabolism is strongly linked with proliferation of
cancer cells. It has been suggested that let-7a-5p, Stat3,
and hnRNP-A1 form a feedback loop to regulate PKM2
expression and modulate glucose metabolism in breast
cancer cells, suggesting that inhibiting STAT3-related me-
tabolism may inhibit breast cancer proliferation [42].

There are several new pathways associated with STAT3
and breast cancer that have been minimally studied to date.
It has been revealed that the Ca*" activated chloride chan-
nel TMEM16A forms an activation loop with EGFR/
STAT3 to promote breast cancer proliferation [43]. More-
over, tripartite motif-containing 14 (TRIM14) is found to
increase the expression of p-STAT3 to promote breast can-
cer proliferation [44]. In addition, it is reported that pyru-
vate kinase type M2 (PKT-M2) regulates phosphorylation
of STAT3 in breast cancer [45], whereas cystathionine-
lyase (CSE) suppresses the expression of STAT3/matrix
metallopeptidases-2 (MMP2), MMP9, p-protein kinase B
and B-cell lymphoma 2 [46].

The role of STAT3 in breast cancer metastasis

An illustration of the advances of the STAT3 signaling
pathways in breast cancer metastasis is shown in Fig. 4.
Matrix metallopeptidases (MMPs) are known to play
important roles in breast cancer metastasis. A well-
studied mechanism of STAT3-mediated cell metastasis
is through upregulating MMP2, MMP9, Twist, Snail,
Slug and vimentin [47-49]. Ma et al. have reported that
inhibition of STAT3 phosphorylation could reduce the
expression of vasodilator-stimulated phosphoprotein
(VASP), MMP2 and MMP9 in breast cancer [50]. As
mentioned previously, STAT3 signaling is usually acti-
vated upon binding of cytokines and growth factors to
their cognate receptors on the plasma membrane. The
previously mentioned Wwox can inhibit breast cancer
metastasis by preventing receptor binding [35]. Further-
more, Kim et al. have demonstrated that Mesoderm-
specific transcript (MEST) induces Twist expression by
activating the JAK/STAT3 signaling pathway [51],
whereas Khanna et al. have shown the inhibition of
GRAM domain-containing protein 1B (GRAMDI1B) in
breast cancer migration via the suppression of the JAK/
STATS3 and protein kinase B (Akt) pathway [52]. Instead
of classical ligand/receptor binding in the plasma mem-
brane for STAT3 activation, a new pathway is found in
which OSM/SMAD3 could also activate STAT3 and
mediate Snail expression and promote epithelial-
mesenchymal transition (EMT) in breast cancer, indicat-
ing a distinct route of STAT3 activation through
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cytoplasmic molecules and endogenous signaling [53].
Other signaling molecules, including miRNA, proto-
oncogene serine/threonine-protein kinase (PIM1),
Mucin-1-C (MUC1-C), natriuretic peptide receptor A
(NPRA) and RhoU, were also discovered to participate
in STAT3-mediated breast cancer metastasis. miR-30d
is found to mediate migration and invasion in breast
cancer cells by regulating Kriippel-like factor 11
(KLF-11), a new exogenous signaling pathway that
can activate STAT3 by binding to its transmembrane
receptor KLF-11R [54]. In addition, IL-11 is also
found to regulate the JAK/STAT3 pathway in breast
cancer-bone metastasis [55]. PIM1, a proto-oncogene
responsible for promoting cell invasion and upregulat-
ing EMT expression in breast cancer, is found to be
regulated by the IL-6/STATS3 signaling pathway [56].
MUCI-C, an oncogenic protein, can activate STAT3
and induce Twist transactivation to promote EMT
[57]. Moreover, NPRA, one of the natriuretic peptide
receptors, is found to increase the expression of
STAT3 and MMP9 to promote the migration and
invasion of breast cancer cells [58]. STAT3, by co-
operating with Specificity Protein 1 (SP1), is found to
induce high Ras Homolog Family Member U (RhoU)
expression and breast cancer cell migration [59]. Add-
itionally, some enzymes are also found to participate
in breast cancer metastasis by the posttranscriptional
modification of STAT3. ARHGAP24, a Rac-specific
Rho GTPase-activating protein (Rho GAP), is found
to promote phosphorylation of STAT3 and to in-
crease the expression of MMP2 and MMP9 in breast
cancer cells [60]. GCNS5, a histone acetyltransferase, is
found to upregulate the expression of p-STAT3, p-
AKT, MMP9 and E2F1 and promote breast cancer
migration and invasion [61].

Hypoxia is a stressed state that is extensively studied in
cancers. Abyaneh et al. have found that hypoxia can
significantly induce the activation of STAT3 to promote
breast cancer stemness and metastasis [62]. This
phenomenon provides us with a new direction for STAT3
research and targeted STAT3 therapy in breast cancer.
Moreover, our recent research has found that estrogen re-
lated receptor alpha could promote the metastasis of triple
negative breast cancer as a target gene of STAT3 [63].

The role of STAT3 in breast cancer chemoresistance

An illustration of the advances of the STAT3 signaling
pathways in breast cancer chemoresistance is shown in
Fig. 5. Tzeng et al. have indicated that the Src/STAT3
signaling pathway is involved in multidrug resistance in
triple negative breast cancer cells [64]. It is also found
that crosstalk between breast cancer cells and macro-
phages can induce tamoxifen and ICI 182,780 resistance
through the NF-kB/STAT3/ERK pathways [65].
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Fig. 4 Advances of the STAT3 signaling pathways involving breast cancer metastasis. Classical IL-6/JAK/STAT3 pathways activate the transcription
of MMP2, MMP9, Twist, Snail, Slug and vimentin to promote breast cancer metastasis, which can be suppressed by MEST and activated by
GRAMD1B. Wwox can inhibit the binding of IL-6 and IL-6R/gp130. IL-11 and KLF-11 can also activate STAT3 to promote breast cancer metastasis
by binding to their receptors. ARHGAP24, MUC1-C, NPRA and OSM-mediated SMAD3 function to upregulate the phosphorylation of STAT3.
Estrogen related receptor alpha (ERR-a) can be transcriptionally activated by STAT3 and promote breast cancer metastasis. Phosphorylated STAT3
induces the activation of VASP to inhibit the metastasis of breast cancer, whereas PIM1 induced by phosphorylated STAT3 may have the opposite
effect. The combination of phosphorylated STAT3 and RhoU inhibits breast cancer metastasis. Additionally, TFEB can activate the phosphorylation

of STAT3 and AKT to promote breast cancer metastasis

The newly discovered downstream targets of STAT3-
mediated chemoresistance include fatty acid beta-
oxidation (FAO), -carnitine palmitoyltransferase 1B
(CPT1B), mitogen-activated protein kinase (MAPK)/
AKT, HIF-1 and octamer-binding transcription factor-4
(Oct-4). It has been found that the JAK2/STAT3 signal-
ing pathway increases CPT1B and FAO to increase che-
moresistance in breast cancer [66]. Wang et al. found
that IL-22 can promote JAK-STAT3/MAPKs/AKT path-
way activation to induce breast cancer migration and
paclitaxel resistance [67]. Moreover, miR-124 has been
identified to reverse doxorubicin (DOX) resistance of
breast cancer cells through targeting the STAT3/hyp-
oxia-inducible factor 1 (HIF-1) pathway [68]. A recent
study shows that Oct-4 and c-myc can form a signal

circuit to increase Adriamycin resistance in breast can-
cer [69]. Meanwhile, Kim et al. have discovered that
Oct-4 confers radiation resistance via STAT3 and NF-B-
mediated IL-24 production in breast cancer cells [70]. In
addition, paclitaxel is widely used as a clinical drug of
breast cancer treatment, and phosphorylated STAT3
could mediate Survivin to promote paclitaxel resistance
[71].

There are several upstream regulators of STAT3-
mediated chemoresistance that have been identified in
recent years. The COOH-terminal proline-rich region of
78-kDa glucose-regulated protein (GRP78), by regulating
STATS3, is found to play a crucial role in the develop-
ment of tamoxifen-resistant breast cancer cells [72].
Wang et al. have found that leukemia inhibitory factor
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Fig. 5 Advances of the STAT3 signaling pathways involving breast cancer chemoresistance. Classical IL-6/JAK/STAT3 pathways can induce
chemoresistance in breast cancer, while miR-4532 may attenuate this effect by inhibiting HIC-1 and IL-6/STAT3 pathways. Leukemia inhibitory
factor (LIF) binding to its receptor LIFR can increase the activation of STAT3. STAT3 and pSTAT3 levels are regulated by GRP78. Then,
phosphorylated STAT3 activates cellular molecules including FAO, CPT1B and MAPK/AKT to induce the chemoresistance of breast cancer. Oct-4
and c-Myc form a signaling loop to promote STAT3/NF-kB activation and chemoresistance in breast cancer. Additionally, miR-124 can inhibit HIF-

receptor (LIFR) could promote STAT3 activation and
contribute to breast cancer resistance to Trastuzumab-
emtansine (T-DM1) [73]. Furthermore, miR-4532 is
found to suppress hypermethylated in cancer-1 (HIC-1)
and IL-6/STAT3 to promote Adriamycin resistance in
breast cancer [74].

Some small molecules have also been found to con-
tribute to chemoresistance mediated by STAT3. Piper-
longumine combined with DOX is also found to induce
apoptosis and inhibit DOX resistance of breast cancer
cells via the JAK/STAT3 pathway [75]. In addition, tar-
geting IL6/STAT3 activity using STAT3 inhibitor com-
bined with a poly ADP-ribose polymerase (PARP)
inhibitor could effectively treat palbociclib resistance in
breast cancer cells [76].

Advances in the study of compounds targeting
STAT3 in breast cancer

Compounds inhibiting the upstream of STAT3 in breast
cancer

Several compounds are found to inhibit the upstream
mediators of STAT3 in breast cancer since 2018
(Table 1). Many of these compounds target the IL-6/
STATS3 signaling pathway. Ilamycin C is found to induce
apoptosis and inhibit migration and invasion by sup-
pressing the IL-6/STAT3 pathway [34]. A small mol-
ecule, bazedoxifene, is a novel IL-6/GP130 inhibitor that
reduces breast cancer proliferation and migration [77].
Moreover, Esparza-Lopez et al. have discovered the in-
hibitory effect of metformin in IL-6-induced prolifera-
tion and EMT through the STAT3/NF-kB pathway in
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Proposed Effects Inhibitor Cancer cell line tested Refs
Signaling Pathways  Inhibiting IL-6/JAK/STAT3 pathway llamycin C MCF-7, MCF-10A [34]
bazedoxifene SUM159, MDA-MB-231, MDA-MB-468 [77]
esculentoside A MCF-7, MCF-10A, LO2 [78]
catechol MCF-7, MDA-MB-231 [79]
scorpion venom HCT-8, MDA-MB-231 [80]
dihydrotanshinone MCF-7, MDA-MB-231 [24]
DT-13 MDA-MB-231, MDA-MB-468 [81]
ganoderic acid A MDA-MB-231 [82]
methylseleninic acid 4T1 [83]
sesquiterpenoid MDA-MB-231 [84]
sabutoclax MCF-7 [85]
tagalide A and tagalol A MDA-MB-453, MDA- MB-231, SK-BR-3, [86]
MCF-7, MT-1, ZR-75-1
Inhibiting SIRT1/STAT3 pathway 1157172 MCF-7 [43]
Inhibiting miR-124/STAT3 pathway cyanidin-3-glucoside MDA-MB-231, Hs-578 T [87]
Inhibiting EGFR/STAT3/Akt pathway ~ CAPE-pNO, MDA-MB-231 [88]
Inhibiting STAT3/NF-kB pathway metformin MBCDF, MBCD3, MBCD4, MBCD17, [89]
MBCD23, MBCD25
alantolactone MDA-MB-231 [90]
Inhibiting STAT3/Nanong pathway isoharringtonine HCC1806, HCC1937, MCF-7 [91]
Suppressing STAT3  Inhibiting STAT3 phosphorylation Galiellalactone BT-549, BT-20, MDA-MB-468, MCF-7, [92]
function and dimerization SG-1709 T47D, SK-BR-3, MDA-MB-453
SG-1721
Inhibiting STAT3 phosphorylation/ schisandrin A MCF-7 [93]
activation hexane fraction MDA-MB-231 33)
ruxolitinib MCF-7 [94]
pyrimethamine TUBO, TM40D-MB [95]
stattic ZR-75-1 [96]
niclosamide MCF-7, MDA-MB-231, MDA-MB-468 [97]
flubendazole MDA-MB-231, Hs578T, BT-549, 4 T1 [98]
eupalinolide J HEK 293, MDA-MB-468, MDA-MB-231 [99]
betulinic acid MCF-7, MDA-MB-231 [100]
Direct binding to Binding to SH2 domain cryptotanshinone KYZ3 MDA-MB-231, MDA-MB-468, [101]
STAT3 MCF-10A, LO2
napabucasin MDA-MB-231 [102]
coumarin-benzo [b] thiophene 1,  MDA-MB-231, LO,, HepG2 [103]
1-dioxide conjugates
Binding to Cys 259 and 251 sites 15-keto PGE2 MCF10A, MDA-MB-231, PC3 [104]
Others risedronate sodium and MCF-7, MDA-MB-231 [105]

zoledronic acid

osthole

MDA-MB-231, BT-549, MDA-MB-468, MCF-7  [106]

breast cancer [89]. DT-13, the saponin monomer 13 of
the Dwarf lilyturf tuber, has been identified as a suppres-
sor of breast cancer metastasis that acts by inhibiting
both JAK/STAT3 and PI3K/AKT signaling pathways
[81]. Furthermore, a natural compound called esculento-
side A, a triterpene saponin derived from the root of

Phytolacca esculenta, can also inhibit the IL-6/STAT3
pathway [78]. Meanwhile, another nature compound
called catechol, which is derived from Aronia juice,
shows similar effects in breast cancer cells [79]. In
addition, scorpion venom can decrease IL-6, RhoC, ERK
(1/2), and STAT3 and inhibit breast cancer proliferation
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[80]. As discussed previously, dihydrotanshinone inhibits
breast cancer cells progression and stem cell formation
through the IL-6/STAT3 pathway [24].

Other compounds target different signaling pathways,
including the JAK2/STAT3 and Akt pathways. Both
ganoderic acid A, which is isolated from ganoderma, and
methylseleninic acid are found to suppress breast cancer
proliferation via the JAK2/STAT3 pathway [82, 83]. A
compound called caffeic acid p-nitro-phenethyl ester
(CAPE-pNO,) is found to inhibit the EGFR/STAT3/Akt
pathway and suppress breast cancer proliferation and
metastasis [88]. Moreover, 1157172, a novel inhibitor of
cystathionine-lyase, is found to inhibit the proliferation
and migration of breast cancer cells via upregulation of
SIRT1 and inhibition of STATS3 signaling pathway [46].

Other compounds target the regulation of STAT3 ex-
pression. Alantolactone, a sesquiterpene lactone, can sig-
nificantly decrease the expression of STAT3 and NF-«B
in breast cancer [90]. Similarly, cyanidin-3-glucoside
(C3G) can increase miR-124 expression and attenuate
breast cancer proliferation by downregulating STAT3
expression [87].

Compounds inhibiting the activation of STAT3 in breast
cancer

In recent years, various novel compounds have been
found to inhibit the phosphorylation and activation of
STATS3. A sesquiterpenoid from Farfarae Flos (ECN) is
found to inhibit the phosphorylation and dimerization of
STAT3 in the JAK/STAT3 pathway [84]. Moreover,
(—)-galiellalactone and its novel analogues, SG-1709 and
SG-1721, are found to inhibit STAT3 phosphorylation
and suppress the dimerization and DNA-binding of
STAT3 in breast cancer [92]. Similarly, schisandrin A is
found to reverse doxorubicin resistance via inhibition of
STAT3 phosphorylation in breast cancer [93]. Chun et al.
have found that the hexane fraction from I helenium
(HFIH) can inhibit STAT3 phosphorylation at tyrosine
705 [33]. Niclosamide, that was reported to be a potent
STATS3 inhibitor in TNBC cells, was found to overcome
the radioresistance in TNBC cells via inhibition of STAT3
and Bcl-2 activation and induction of reactive oxygen spe-
cies (ROS) [97]. In addition, flubendazole (FLU), a widely
used anthelmintic agent, eupalinolide ], a Michael-
reaction acceptor extracted from Eupatorium lindleya-
num, and betulinic acid are found to inhibit STAT3 acti-
vation in breast cancer cells [98-100]. As an upstream
activator of STATS3, inhibition of JAK2 can undoubtedly
suppress STAT3 activation. The classical JAK2 inhibitor is
known as AG490. Recently, ruxolitinib is found to have a
potential to be a new selective JAK2 inhibitor and to block
STATS3 activation [94]. Furthermore, tagalide A and taga-
lol A are also found to inhibit the phosphorylation of
STAT3 and JAK2 in breast cancer [86]. Additionally,
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sabutoclax, a pan-active BCL-2 protein family antagonist,
is found to inhibit the IL-6/STAT3 pathway and thereby
overcome multidrug resistance in breast cancer [85],
whereas isoharringtonine (IHT) is found to suppress the
STAT3/Nanong pathway to inhibit breast cancer prolifer-
ation [91].

Notably, some STAT3 inhibitors are found to function
in many biological processes. Sravanthi et al. have
screened 29,388 ligands docking with STAT3 and found
that Risedronate Sodium (RES) and Zoledronic acid
(ZOL) could tightly combine with STAT3 and show sig-
nificant cytotoxicity in breast cancer cells [105]. More-
over, a new synthetic derivative of cryptotanshinone
KYZ3 is found to directly bind to the SH2 domain of
STAT3 and act as a new STATS3 inhibitor [101]. Napa-
bucasin and its angularly anellated isomer could also
combine with SH2 domain of STAT3 [102]. One of
coumarin-benzo [b] thiophene 1, 1-dioxide conjugates,
compound 7a, could also combine with SH2 domain of
STATS3 [103]. 15-Keto prostaglandin E-2 could bind to
the Cys 251 and Cys 259 sites of STAT3 protein to in-
hibit the migration and proliferation of breast cancer
[104]. Furthermore, pyrimethamine, a classic anti-
microbial drug, is found to be a new STAT3 inhibitor
and shows strong anti-cancer effects [95]. In addition,
osthole, via binding to STAT3 protein, is found to sup-
press STAT3 activity and inhibit breast cancer cells
apoptosis [106], whereas another STAT3 inhibitor, stat-
tic, is found to promote the Bax/Bcl-2-mediated apop-
tosis in breast cancer and to increase the therapeutic
effects of doxorubicin [96].

Conclusions

In summary, evidence discussed in this review highlights
the potential value of discovering new biological and
physiological mechanisms in breast cancer. STAT3 acts
as a transcriptional activator in breast cancer, which reg-
ulates several target oncogenes and affects breast cancer
progression, proliferation, apoptosis, metastasis and che-
moresistance. It is intriguing that various upstream regu-
lators and downstream target genes have been newly
discovered, suggesting potential targets that can be used
for breast cancer therapy. Among these pathways, circuit
loops and network crosstalk are notable. Together with
the development of neural networks, these phenomena
remind us that signaling pathways may not be regulated
only in sequential order, suggesting that findings regard-
ing the feedback-loops and networks still need our
continuous attention. Using Bayesian inference, a mathe-
matic framework, researchers have found that combin-
ation therapy targeting mTOR and STAT3 may be the
best therapeutic target in breast cancer [107]. There
were also several efficient and available clinical trials tar-
geting STAT3, which was recently reported by Qin et al.
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[108]. Notably, several new specific STAT3 inhibitors
have been found in recent years. Structure optimization
of these inhibitors for reduced cytotoxicity to normal tis-
sues and higher stability may be an interesting direction
for researchers. Treatment with STAT3 inhibitors alone
or combined with other clinical therapeutic drugs may
provide more promising effects on suppressing or re-
versing chemoresistance in breast cancer. Especially for
breast cancer patients suffering from doxorubicin or
capecitabine resistance, STAT3 inhibitors instead of ex-
pensive monoclonal antibodies may be more beneficial.
Therefore, STAT3 remains to be a strong clinical target
for breast cancer prevention and therapy, which is worth
continuous research.
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